Evaluate
\frac{2\left(a-b\right)}{\left(a+1\right)\left(2+b-a\right)}
Expand
\frac{2\left(a-b\right)}{\left(a+1\right)\left(2+b-a\right)}
Share
Copied to clipboard
\frac{\frac{\left(1-b\right)\left(a+1\right)}{\left(a+1\right)\left(b+1\right)}-\frac{\left(1-a\right)\left(b+1\right)}{\left(a+1\right)\left(b+1\right)}}{1+\frac{1-a}{1-b}\times \frac{1-b}{1+b}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 1+b and 1+a is \left(a+1\right)\left(b+1\right). Multiply \frac{1-b}{1+b} times \frac{a+1}{a+1}. Multiply \frac{1-a}{1+a} times \frac{b+1}{b+1}.
\frac{\frac{\left(1-b\right)\left(a+1\right)-\left(1-a\right)\left(b+1\right)}{\left(a+1\right)\left(b+1\right)}}{1+\frac{1-a}{1-b}\times \frac{1-b}{1+b}}
Since \frac{\left(1-b\right)\left(a+1\right)}{\left(a+1\right)\left(b+1\right)} and \frac{\left(1-a\right)\left(b+1\right)}{\left(a+1\right)\left(b+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{1+a-ba-b-b-1+ab+a}{\left(a+1\right)\left(b+1\right)}}{1+\frac{1-a}{1-b}\times \frac{1-b}{1+b}}
Do the multiplications in \left(1-b\right)\left(a+1\right)-\left(1-a\right)\left(b+1\right).
\frac{\frac{2a-2b}{\left(a+1\right)\left(b+1\right)}}{1+\frac{1-a}{1-b}\times \frac{1-b}{1+b}}
Combine like terms in 1+a-ba-b-b-1+ab+a.
\frac{\frac{2a-2b}{\left(a+1\right)\left(b+1\right)}}{1+\frac{\left(1-a\right)\left(1-b\right)}{\left(1-b\right)\left(1+b\right)}}
Multiply \frac{1-a}{1-b} times \frac{1-b}{1+b} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{2a-2b}{\left(a+1\right)\left(b+1\right)}}{1+\frac{-a+1}{b+1}}
Cancel out -b+1 in both numerator and denominator.
\frac{\frac{2a-2b}{\left(a+1\right)\left(b+1\right)}}{\frac{b+1}{b+1}+\frac{-a+1}{b+1}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{b+1}{b+1}.
\frac{\frac{2a-2b}{\left(a+1\right)\left(b+1\right)}}{\frac{b+1-a+1}{b+1}}
Since \frac{b+1}{b+1} and \frac{-a+1}{b+1} have the same denominator, add them by adding their numerators.
\frac{\frac{2a-2b}{\left(a+1\right)\left(b+1\right)}}{\frac{b+2-a}{b+1}}
Combine like terms in b+1-a+1.
\frac{\left(2a-2b\right)\left(b+1\right)}{\left(a+1\right)\left(b+1\right)\left(b+2-a\right)}
Divide \frac{2a-2b}{\left(a+1\right)\left(b+1\right)} by \frac{b+2-a}{b+1} by multiplying \frac{2a-2b}{\left(a+1\right)\left(b+1\right)} by the reciprocal of \frac{b+2-a}{b+1}.
\frac{2a-2b}{\left(a+1\right)\left(-a+b+2\right)}
Cancel out b+1 in both numerator and denominator.
\frac{2a-2b}{-a^{2}+ab+2a-a+b+2}
Apply the distributive property by multiplying each term of a+1 by each term of -a+b+2.
\frac{2a-2b}{-a^{2}+ab+a+b+2}
Combine 2a and -a to get a.
\frac{\frac{\left(1-b\right)\left(a+1\right)}{\left(a+1\right)\left(b+1\right)}-\frac{\left(1-a\right)\left(b+1\right)}{\left(a+1\right)\left(b+1\right)}}{1+\frac{1-a}{1-b}\times \frac{1-b}{1+b}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 1+b and 1+a is \left(a+1\right)\left(b+1\right). Multiply \frac{1-b}{1+b} times \frac{a+1}{a+1}. Multiply \frac{1-a}{1+a} times \frac{b+1}{b+1}.
\frac{\frac{\left(1-b\right)\left(a+1\right)-\left(1-a\right)\left(b+1\right)}{\left(a+1\right)\left(b+1\right)}}{1+\frac{1-a}{1-b}\times \frac{1-b}{1+b}}
Since \frac{\left(1-b\right)\left(a+1\right)}{\left(a+1\right)\left(b+1\right)} and \frac{\left(1-a\right)\left(b+1\right)}{\left(a+1\right)\left(b+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{1+a-ba-b-b-1+ab+a}{\left(a+1\right)\left(b+1\right)}}{1+\frac{1-a}{1-b}\times \frac{1-b}{1+b}}
Do the multiplications in \left(1-b\right)\left(a+1\right)-\left(1-a\right)\left(b+1\right).
\frac{\frac{2a-2b}{\left(a+1\right)\left(b+1\right)}}{1+\frac{1-a}{1-b}\times \frac{1-b}{1+b}}
Combine like terms in 1+a-ba-b-b-1+ab+a.
\frac{\frac{2a-2b}{\left(a+1\right)\left(b+1\right)}}{1+\frac{\left(1-a\right)\left(1-b\right)}{\left(1-b\right)\left(1+b\right)}}
Multiply \frac{1-a}{1-b} times \frac{1-b}{1+b} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{2a-2b}{\left(a+1\right)\left(b+1\right)}}{1+\frac{-a+1}{b+1}}
Cancel out -b+1 in both numerator and denominator.
\frac{\frac{2a-2b}{\left(a+1\right)\left(b+1\right)}}{\frac{b+1}{b+1}+\frac{-a+1}{b+1}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{b+1}{b+1}.
\frac{\frac{2a-2b}{\left(a+1\right)\left(b+1\right)}}{\frac{b+1-a+1}{b+1}}
Since \frac{b+1}{b+1} and \frac{-a+1}{b+1} have the same denominator, add them by adding their numerators.
\frac{\frac{2a-2b}{\left(a+1\right)\left(b+1\right)}}{\frac{b+2-a}{b+1}}
Combine like terms in b+1-a+1.
\frac{\left(2a-2b\right)\left(b+1\right)}{\left(a+1\right)\left(b+1\right)\left(b+2-a\right)}
Divide \frac{2a-2b}{\left(a+1\right)\left(b+1\right)} by \frac{b+2-a}{b+1} by multiplying \frac{2a-2b}{\left(a+1\right)\left(b+1\right)} by the reciprocal of \frac{b+2-a}{b+1}.
\frac{2a-2b}{\left(a+1\right)\left(-a+b+2\right)}
Cancel out b+1 in both numerator and denominator.
\frac{2a-2b}{-a^{2}+ab+2a-a+b+2}
Apply the distributive property by multiplying each term of a+1 by each term of -a+b+2.
\frac{2a-2b}{-a^{2}+ab+a+b+2}
Combine 2a and -a to get a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}