Evaluate
\frac{8\sqrt{3}}{3}-\frac{1}{2}\approx 4.118802154
Factor
\frac{16 \sqrt{3} - 3}{6} = 4.118802153517006
Share
Copied to clipboard
\frac{\frac{1}{2}+4\times \frac{2\sqrt{3}}{\left(\sqrt{3}\right)^{2}}-1^{2}}{\left(\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}
Rationalize the denominator of \frac{2}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\frac{1}{2}+4\times \frac{2\sqrt{3}}{3}-1^{2}}{\left(\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}
The square of \sqrt{3} is 3.
\frac{\frac{1}{2}+\frac{4\times 2\sqrt{3}}{3}-1^{2}}{\left(\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}
Express 4\times \frac{2\sqrt{3}}{3} as a single fraction.
\frac{\frac{3}{6}+\frac{2\times 4\times 2\sqrt{3}}{6}-1^{2}}{\left(\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 3 is 6. Multiply \frac{1}{2} times \frac{3}{3}. Multiply \frac{4\times 2\sqrt{3}}{3} times \frac{2}{2}.
\frac{\frac{3+2\times 4\times 2\sqrt{3}}{6}-1^{2}}{\left(\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}
Since \frac{3}{6} and \frac{2\times 4\times 2\sqrt{3}}{6} have the same denominator, add them by adding their numerators.
\frac{\frac{3+16\sqrt{3}}{6}-1^{2}}{\left(\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}
Do the multiplications in 3+2\times 4\times 2\sqrt{3}.
\frac{\frac{3+16\sqrt{3}}{6}-1}{\left(\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}
Calculate 1 to the power of 2 and get 1.
\frac{\frac{3+16\sqrt{3}}{6}-\frac{6}{6}}{\left(\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{6}{6}.
\frac{\frac{3+16\sqrt{3}-6}{6}}{\left(\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}
Since \frac{3+16\sqrt{3}}{6} and \frac{6}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{-3+16\sqrt{3}}{6}}{\left(\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}
Do the calculations in 3+16\sqrt{3}-6.
\frac{\frac{-3+16\sqrt{3}}{6}}{\frac{1}{4}+\left(\frac{\sqrt{3}}{2}\right)^{2}}
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{\frac{-3+16\sqrt{3}}{6}}{\frac{1}{4}+\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}}
To raise \frac{\sqrt{3}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{-3+16\sqrt{3}}{6}}{\frac{1}{4}+\frac{\left(\sqrt{3}\right)^{2}}{4}}
To add or subtract expressions, expand them to make their denominators the same. Expand 2^{2}.
\frac{\frac{-3+16\sqrt{3}}{6}}{\frac{1+\left(\sqrt{3}\right)^{2}}{4}}
Since \frac{1}{4} and \frac{\left(\sqrt{3}\right)^{2}}{4} have the same denominator, add them by adding their numerators.
\frac{\left(-3+16\sqrt{3}\right)\times 4}{6\left(1+\left(\sqrt{3}\right)^{2}\right)}
Divide \frac{-3+16\sqrt{3}}{6} by \frac{1+\left(\sqrt{3}\right)^{2}}{4} by multiplying \frac{-3+16\sqrt{3}}{6} by the reciprocal of \frac{1+\left(\sqrt{3}\right)^{2}}{4}.
\frac{2\left(16\sqrt{3}-3\right)}{3\left(\left(\sqrt{3}\right)^{2}+1\right)}
Cancel out 2 in both numerator and denominator.
\frac{2\left(16\sqrt{3}-3\right)}{3\left(3+1\right)}
The square of \sqrt{3} is 3.
\frac{2\left(16\sqrt{3}-3\right)}{3\times 4}
Add 3 and 1 to get 4.
\frac{2\left(16\sqrt{3}-3\right)}{12}
Multiply 3 and 4 to get 12.
\frac{1}{6}\left(16\sqrt{3}-3\right)
Divide 2\left(16\sqrt{3}-3\right) by 12 to get \frac{1}{6}\left(16\sqrt{3}-3\right).
\frac{8}{3}\sqrt{3}-\frac{1}{2}
Use the distributive property to multiply \frac{1}{6} by 16\sqrt{3}-3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}