Solve for y
y=3\sqrt{2}+4\approx 8.242640687
y=4-3\sqrt{2}\approx -0.242640687
Graph
Share
Copied to clipboard
\frac{|4-y|}{\sqrt{1+1}}=3
Add 3 and 1 to get 4.
\frac{|4-y|}{\sqrt{2}}=3
Add 1 and 1 to get 2.
\frac{|4-y|\sqrt{2}}{\left(\sqrt{2}\right)^{2}}=3
Rationalize the denominator of \frac{|4-y|}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{|4-y|\sqrt{2}}{2}=3
The square of \sqrt{2} is 2.
|4-y|\sqrt{2}=3\times 2
Multiply both sides by 2.
|4-y|\sqrt{2}=6
Multiply 3 and 2 to get 6.
\sqrt{2}|-y+4|=6
Combine like terms and use the properties of equality to get the variable on one side of the equal sign and the numbers on the other side. Remember to follow the order of operations.
|-y+4|=3\sqrt{2}
Divide both sides by \sqrt{2}.
-y+4=3\sqrt{2} -y+4=-3\sqrt{2}
Use the definition of absolute value.
-y=3\sqrt{2}-4 -y=-3\sqrt{2}-4
Subtract 4 from both sides of the equation.
y=4-3\sqrt{2} y=3\sqrt{2}+4
Divide both sides by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}