Evaluate
-\frac{11}{9}\approx -1.222222222
Factor
-\frac{11}{9} = -1\frac{2}{9} = -1.2222222222222223
Share
Copied to clipboard
\frac{|-1-5\times 2|}{5\left(-1\right)-2^{2}}
Calculate 1 to the power of 2 and get 1.
\frac{|-1-10|}{5\left(-1\right)-2^{2}}
Multiply 5 and 2 to get 10.
\frac{|-11|}{5\left(-1\right)-2^{2}}
Subtract 10 from -1 to get -11.
\frac{11}{5\left(-1\right)-2^{2}}
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of -11 is 11.
\frac{11}{-5-2^{2}}
Multiply 5 and -1 to get -5.
\frac{11}{-5-4}
Calculate 2 to the power of 2 and get 4.
\frac{11}{-9}
Subtract 4 from -5 to get -9.
-\frac{11}{9}
Fraction \frac{11}{-9} can be rewritten as -\frac{11}{9} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}