Solve for A (complex solution)
\left\{\begin{matrix}A=\frac{\epsilon _{A}\left(d_{1}+d_{2}\right)}{ed_{1}+d_{2}\epsilon }\text{, }&d_{1}\neq -\frac{d_{2}\epsilon }{e}\text{ and }d_{1}\neq 0\text{ and }d_{2}\neq 0\\A\in \mathrm{C}\text{, }&\left(\epsilon _{A}=0\text{ and }d_{1}=-\frac{d_{2}\epsilon }{e}\text{ and }\epsilon \neq 0\text{ and }d_{2}\neq 0\right)\text{ or }\left(d_{1}=-d_{2}\text{ and }\epsilon =e\text{ and }d_{2}\neq 0\right)\end{matrix}\right.
Solve for A
\left\{\begin{matrix}A=\frac{\epsilon _{A}\left(d_{1}+d_{2}\right)}{ed_{1}+d_{2}\epsilon }\text{, }&d_{1}\neq -\frac{d_{2}\epsilon }{e}\text{ and }d_{1}\neq 0\text{ and }d_{2}\neq 0\\A\in \mathrm{R}\text{, }&\left(\epsilon _{A}=0\text{ and }d_{1}=-\frac{d_{2}\epsilon }{e}\text{ and }\epsilon \neq 0\text{ and }d_{2}\neq 0\right)\text{ or }\left(d_{1}=-d_{2}\text{ and }\epsilon =e\text{ and }d_{2}\neq 0\right)\end{matrix}\right.
Solve for d_1
\left\{\begin{matrix}d_{1}=-\frac{d_{2}\left(A\epsilon -\epsilon _{A}\right)}{eA-\epsilon _{A}}\text{, }&\left(d_{2}\neq 0\text{ and }A=0\text{ and }\epsilon _{A}\neq 0\right)\text{ or }\left(d_{2}\neq 0\text{ and }A\neq 0\text{ and }\epsilon \neq \frac{\epsilon _{A}}{A}\text{ and }A\neq \frac{\epsilon _{A}}{e}\right)\\d_{1}\neq 0\text{, }&\left(A=0\text{ and }\epsilon _{A}=0\text{ and }d_{2}\neq 0\right)\text{ or }\left(\epsilon =e\text{ and }\epsilon _{A}\neq 0\text{ and }A=\frac{\epsilon _{A}}{e}\text{ and }d_{2}\neq 0\right)\end{matrix}\right.
Share
Copied to clipboard
d_{2}\epsilon A+d_{1}eA=\left(d_{1}+d_{2}\right)\epsilon _{A}
Multiply both sides of the equation by d_{1}d_{2}, the least common multiple of d_{1},d_{2},d_{1}d_{2}.
d_{2}\epsilon A+d_{1}eA=d_{1}\epsilon _{A}+d_{2}\epsilon _{A}
Use the distributive property to multiply d_{1}+d_{2} by \epsilon _{A}.
\left(d_{2}\epsilon +d_{1}e\right)A=d_{1}\epsilon _{A}+d_{2}\epsilon _{A}
Combine all terms containing A.
\left(ed_{1}+d_{2}\epsilon \right)A=d_{1}\epsilon _{A}+d_{2}\epsilon _{A}
The equation is in standard form.
\frac{\left(ed_{1}+d_{2}\epsilon \right)A}{ed_{1}+d_{2}\epsilon }=\frac{\epsilon _{A}\left(d_{1}+d_{2}\right)}{ed_{1}+d_{2}\epsilon }
Divide both sides by ed_{1}+d_{2}\epsilon .
A=\frac{\epsilon _{A}\left(d_{1}+d_{2}\right)}{ed_{1}+d_{2}\epsilon }
Dividing by ed_{1}+d_{2}\epsilon undoes the multiplication by ed_{1}+d_{2}\epsilon .
d_{2}\epsilon A+d_{1}eA=\left(d_{1}+d_{2}\right)\epsilon _{A}
Multiply both sides of the equation by d_{1}d_{2}, the least common multiple of d_{1},d_{2},d_{1}d_{2}.
d_{2}\epsilon A+d_{1}eA=d_{1}\epsilon _{A}+d_{2}\epsilon _{A}
Use the distributive property to multiply d_{1}+d_{2} by \epsilon _{A}.
\left(d_{2}\epsilon +d_{1}e\right)A=d_{1}\epsilon _{A}+d_{2}\epsilon _{A}
Combine all terms containing A.
\left(ed_{1}+d_{2}\epsilon \right)A=d_{1}\epsilon _{A}+d_{2}\epsilon _{A}
The equation is in standard form.
\frac{\left(ed_{1}+d_{2}\epsilon \right)A}{ed_{1}+d_{2}\epsilon }=\frac{\epsilon _{A}\left(d_{1}+d_{2}\right)}{ed_{1}+d_{2}\epsilon }
Divide both sides by ed_{1}+d_{2}\epsilon .
A=\frac{\epsilon _{A}\left(d_{1}+d_{2}\right)}{ed_{1}+d_{2}\epsilon }
Dividing by ed_{1}+d_{2}\epsilon undoes the multiplication by ed_{1}+d_{2}\epsilon .
d_{2}\epsilon A+d_{1}eA=\left(d_{1}+d_{2}\right)\epsilon _{A}
Variable d_{1} cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by d_{1}d_{2}, the least common multiple of d_{1},d_{2},d_{1}d_{2}.
d_{2}\epsilon A+d_{1}eA=d_{1}\epsilon _{A}+d_{2}\epsilon _{A}
Use the distributive property to multiply d_{1}+d_{2} by \epsilon _{A}.
d_{2}\epsilon A+d_{1}eA-d_{1}\epsilon _{A}=d_{2}\epsilon _{A}
Subtract d_{1}\epsilon _{A} from both sides.
d_{1}eA-d_{1}\epsilon _{A}=d_{2}\epsilon _{A}-d_{2}\epsilon A
Subtract d_{2}\epsilon A from both sides.
eAd_{1}-d_{1}\epsilon _{A}=-Ad_{2}\epsilon +d_{2}\epsilon _{A}
Reorder the terms.
\left(eA-\epsilon _{A}\right)d_{1}=-Ad_{2}\epsilon +d_{2}\epsilon _{A}
Combine all terms containing d_{1}.
\left(eA-\epsilon _{A}\right)d_{1}=d_{2}\epsilon _{A}-Ad_{2}\epsilon
The equation is in standard form.
\frac{\left(eA-\epsilon _{A}\right)d_{1}}{eA-\epsilon _{A}}=\frac{d_{2}\left(\epsilon _{A}-A\epsilon \right)}{eA-\epsilon _{A}}
Divide both sides by eA-\epsilon _{A}.
d_{1}=\frac{d_{2}\left(\epsilon _{A}-A\epsilon \right)}{eA-\epsilon _{A}}
Dividing by eA-\epsilon _{A} undoes the multiplication by eA-\epsilon _{A}.
d_{1}=\frac{d_{2}\left(\epsilon _{A}-A\epsilon \right)}{eA-\epsilon _{A}}\text{, }d_{1}\neq 0
Variable d_{1} cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}