Solve for F (complex solution)
\left\{\begin{matrix}F=\frac{9GM+140}{10\theta }\text{, }&\theta \neq 0\\F\in \mathrm{C}\text{, }&G=-\frac{140}{9M}\text{ and }M\neq 0\text{ and }\theta =0\end{matrix}\right.
Solve for G (complex solution)
\left\{\begin{matrix}G=-\frac{10\left(14-F\theta \right)}{9M}\text{, }&M\neq 0\\G\in \mathrm{C}\text{, }&\theta =\frac{14}{F}\text{ and }F\neq 0\text{ and }M=0\end{matrix}\right.
Solve for F
\left\{\begin{matrix}F=\frac{9GM+140}{10\theta }\text{, }&\theta \neq 0\\F\in \mathrm{R}\text{, }&G=-\frac{140}{9M}\text{ and }M\neq 0\text{ and }\theta =0\end{matrix}\right.
Solve for G
\left\{\begin{matrix}G=-\frac{10\left(14-F\theta \right)}{9M}\text{, }&M\neq 0\\G\in \mathrm{R}\text{, }&\theta =\frac{14}{F}\text{ and }F\neq 0\text{ and }M=0\end{matrix}\right.
Graph
Share
Copied to clipboard
\frac{\theta F-32}{180}=\frac{GM-20}{220-20}
Subtract 32 from 212 to get 180.
\frac{\theta F-32}{180}=\frac{GM-20}{200}
Subtract 20 from 220 to get 200.
10\left(\theta F-32\right)=9\left(GM-20\right)
Multiply both sides of the equation by 1800, the least common multiple of 180,200.
10\theta F-320=9\left(GM-20\right)
Use the distributive property to multiply 10 by \theta F-32.
10\theta F-320=9GM-180
Use the distributive property to multiply 9 by GM-20.
10\theta F=9GM-180+320
Add 320 to both sides.
10\theta F=9GM+140
Add -180 and 320 to get 140.
\frac{10\theta F}{10\theta }=\frac{9GM+140}{10\theta }
Divide both sides by 10\theta .
F=\frac{9GM+140}{10\theta }
Dividing by 10\theta undoes the multiplication by 10\theta .
\frac{\theta F-32}{180}=\frac{GM-20}{220-20}
Subtract 32 from 212 to get 180.
\frac{\theta F-32}{180}=\frac{GM-20}{200}
Subtract 20 from 220 to get 200.
\frac{GM-20}{200}=\frac{\theta F-32}{180}
Swap sides so that all variable terms are on the left hand side.
9\left(GM-20\right)=10\left(\theta F-32\right)
Multiply both sides of the equation by 1800, the least common multiple of 200,180.
9GM-180=10\left(\theta F-32\right)
Use the distributive property to multiply 9 by GM-20.
9GM-180=10\theta F-320
Use the distributive property to multiply 10 by \theta F-32.
9GM=10\theta F-320+180
Add 180 to both sides.
9GM=10\theta F-140
Add -320 and 180 to get -140.
9MG=10F\theta -140
The equation is in standard form.
\frac{9MG}{9M}=\frac{10F\theta -140}{9M}
Divide both sides by 9M.
G=\frac{10F\theta -140}{9M}
Dividing by 9M undoes the multiplication by 9M.
G=\frac{10\left(F\theta -14\right)}{9M}
Divide 10\theta F-140 by 9M.
\frac{\theta F-32}{180}=\frac{GM-20}{220-20}
Subtract 32 from 212 to get 180.
\frac{\theta F-32}{180}=\frac{GM-20}{200}
Subtract 20 from 220 to get 200.
10\left(\theta F-32\right)=9\left(GM-20\right)
Multiply both sides of the equation by 1800, the least common multiple of 180,200.
10\theta F-320=9\left(GM-20\right)
Use the distributive property to multiply 10 by \theta F-32.
10\theta F-320=9GM-180
Use the distributive property to multiply 9 by GM-20.
10\theta F=9GM-180+320
Add 320 to both sides.
10\theta F=9GM+140
Add -180 and 320 to get 140.
\frac{10\theta F}{10\theta }=\frac{9GM+140}{10\theta }
Divide both sides by 10\theta .
F=\frac{9GM+140}{10\theta }
Dividing by 10\theta undoes the multiplication by 10\theta .
\frac{\theta F-32}{180}=\frac{GM-20}{220-20}
Subtract 32 from 212 to get 180.
\frac{\theta F-32}{180}=\frac{GM-20}{200}
Subtract 20 from 220 to get 200.
\frac{GM-20}{200}=\frac{\theta F-32}{180}
Swap sides so that all variable terms are on the left hand side.
9\left(GM-20\right)=10\left(\theta F-32\right)
Multiply both sides of the equation by 1800, the least common multiple of 200,180.
9GM-180=10\left(\theta F-32\right)
Use the distributive property to multiply 9 by GM-20.
9GM-180=10\theta F-320
Use the distributive property to multiply 10 by \theta F-32.
9GM=10\theta F-320+180
Add 180 to both sides.
9GM=10\theta F-140
Add -320 and 180 to get -140.
9MG=10F\theta -140
The equation is in standard form.
\frac{9MG}{9M}=\frac{10F\theta -140}{9M}
Divide both sides by 9M.
G=\frac{10F\theta -140}{9M}
Dividing by 9M undoes the multiplication by 9M.
G=\frac{10\left(F\theta -14\right)}{9M}
Divide 10\theta F-140 by 9M.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}