Skip to main content
Evaluate
Tick mark Image

Share

\frac{\sqrt{3}}{\sin(60)+\cos(60)}
Get the value of \tan(60) from trigonometric values table.
\frac{\sqrt{3}}{\frac{\sqrt{3}}{2}+\cos(60)}
Get the value of \sin(60) from trigonometric values table.
\frac{\sqrt{3}}{\frac{\sqrt{3}}{2}+\frac{1}{2}}
Get the value of \cos(60) from trigonometric values table.
\frac{\sqrt{3}}{\frac{\sqrt{3}+1}{2}}
Since \frac{\sqrt{3}}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
\frac{\sqrt{3}\times 2}{\sqrt{3}+1}
Divide \sqrt{3} by \frac{\sqrt{3}+1}{2} by multiplying \sqrt{3} by the reciprocal of \frac{\sqrt{3}+1}{2}.
\frac{\sqrt{3}\times 2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}
Rationalize the denominator of \frac{\sqrt{3}\times 2}{\sqrt{3}+1} by multiplying numerator and denominator by \sqrt{3}-1.
\frac{\sqrt{3}\times 2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}\right)^{2}-1^{2}}
Consider \left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{3}\times 2\left(\sqrt{3}-1\right)}{3-1}
Square \sqrt{3}. Square 1.
\frac{\sqrt{3}\times 2\left(\sqrt{3}-1\right)}{2}
Subtract 1 from 3 to get 2.
\frac{2\left(\sqrt{3}\right)^{2}-\sqrt{3}\times 2}{2}
Use the distributive property to multiply \sqrt{3}\times 2 by \sqrt{3}-1.
\frac{2\times 3-\sqrt{3}\times 2}{2}
The square of \sqrt{3} is 3.
\frac{6-\sqrt{3}\times 2}{2}
Multiply 2 and 3 to get 6.
\frac{6-2\sqrt{3}}{2}
Multiply -1 and 2 to get -2.
3-\sqrt{3}
Divide each term of 6-2\sqrt{3} by 2 to get 3-\sqrt{3}.