\frac { \sqrt { n } + 1 - \sqrt { n } } { \sqrt { n } ( \sqrt { n } * 1 }
Evaluate
\frac{1}{n}
Differentiate w.r.t. n
-\frac{1}{n^{2}}
Quiz
5 problems similar to:
\frac { \sqrt { n } + 1 - \sqrt { n } } { \sqrt { n } ( \sqrt { n } * 1 }
Share
Copied to clipboard
\frac{\sqrt{n}+1-\sqrt{n}}{1\left(\sqrt{n}\right)^{2}}
Multiply \sqrt{n} and \sqrt{n} to get \left(\sqrt{n}\right)^{2}.
\frac{1}{1\left(\sqrt{n}\right)^{2}}
Combine \sqrt{n} and -\sqrt{n} to get 0.
\frac{1}{1n}
Calculate \sqrt{n} to the power of 2 and get n.
\frac{1}{n}
For any term t, t\times 1=t and 1t=t.
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{\sqrt{n}+1-\sqrt{n}}{1\left(\sqrt{n}\right)^{2}})
Multiply \sqrt{n} and \sqrt{n} to get \left(\sqrt{n}\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{1}{1\left(\sqrt{n}\right)^{2}})
Combine \sqrt{n} and -\sqrt{n} to get 0.
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{1}{1n})
Calculate \sqrt{n} to the power of 2 and get n.
-n^{-1-1}
The derivative of ax^{n} is nax^{n-1}.
-n^{-2}
Subtract 1 from -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}