Evaluate
\frac{7\sqrt{2}-5}{73}\approx 0.067116369
Share
Copied to clipboard
\frac{2\sqrt{2}}{5\sqrt{8}+14\left(-\sqrt{2}\right)^{2}}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{2\sqrt{2}}{5\times 2\sqrt{2}+14\left(-\sqrt{2}\right)^{2}}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{2\sqrt{2}}{10\sqrt{2}+14\left(-\sqrt{2}\right)^{2}}
Multiply 5 and 2 to get 10.
\frac{2\sqrt{2}}{10\sqrt{2}+14\left(\sqrt{2}\right)^{2}}
Calculate -\sqrt{2} to the power of 2 and get \left(\sqrt{2}\right)^{2}.
\frac{2\sqrt{2}}{10\sqrt{2}+14\times 2}
The square of \sqrt{2} is 2.
\frac{2\sqrt{2}}{10\sqrt{2}+28}
Multiply 14 and 2 to get 28.
\frac{2\sqrt{2}\left(10\sqrt{2}-28\right)}{\left(10\sqrt{2}+28\right)\left(10\sqrt{2}-28\right)}
Rationalize the denominator of \frac{2\sqrt{2}}{10\sqrt{2}+28} by multiplying numerator and denominator by 10\sqrt{2}-28.
\frac{2\sqrt{2}\left(10\sqrt{2}-28\right)}{\left(10\sqrt{2}\right)^{2}-28^{2}}
Consider \left(10\sqrt{2}+28\right)\left(10\sqrt{2}-28\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\sqrt{2}\left(10\sqrt{2}-28\right)}{10^{2}\left(\sqrt{2}\right)^{2}-28^{2}}
Expand \left(10\sqrt{2}\right)^{2}.
\frac{2\sqrt{2}\left(10\sqrt{2}-28\right)}{100\left(\sqrt{2}\right)^{2}-28^{2}}
Calculate 10 to the power of 2 and get 100.
\frac{2\sqrt{2}\left(10\sqrt{2}-28\right)}{100\times 2-28^{2}}
The square of \sqrt{2} is 2.
\frac{2\sqrt{2}\left(10\sqrt{2}-28\right)}{200-28^{2}}
Multiply 100 and 2 to get 200.
\frac{2\sqrt{2}\left(10\sqrt{2}-28\right)}{200-784}
Calculate 28 to the power of 2 and get 784.
\frac{2\sqrt{2}\left(10\sqrt{2}-28\right)}{-584}
Subtract 784 from 200 to get -584.
-\frac{1}{292}\sqrt{2}\left(10\sqrt{2}-28\right)
Divide 2\sqrt{2}\left(10\sqrt{2}-28\right) by -584 to get -\frac{1}{292}\sqrt{2}\left(10\sqrt{2}-28\right).
-\frac{5}{146}\left(\sqrt{2}\right)^{2}+\frac{7}{73}\sqrt{2}
Use the distributive property to multiply -\frac{1}{292}\sqrt{2} by 10\sqrt{2}-28.
-\frac{5}{146}\times 2+\frac{7}{73}\sqrt{2}
The square of \sqrt{2} is 2.
-\frac{5}{73}+\frac{7}{73}\sqrt{2}
Multiply -\frac{5}{146} and 2 to get -\frac{5}{73}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}