Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{2\sqrt{2}}{5\sqrt{8}+14\left(-\sqrt{2}\right)^{2}}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{2\sqrt{2}}{5\times 2\sqrt{2}+14\left(-\sqrt{2}\right)^{2}}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{2\sqrt{2}}{10\sqrt{2}+14\left(-\sqrt{2}\right)^{2}}
Multiply 5 and 2 to get 10.
\frac{2\sqrt{2}}{10\sqrt{2}+14\left(\sqrt{2}\right)^{2}}
Calculate -\sqrt{2} to the power of 2 and get \left(\sqrt{2}\right)^{2}.
\frac{2\sqrt{2}}{10\sqrt{2}+14\times 2}
The square of \sqrt{2} is 2.
\frac{2\sqrt{2}}{10\sqrt{2}+28}
Multiply 14 and 2 to get 28.
\frac{2\sqrt{2}\left(10\sqrt{2}-28\right)}{\left(10\sqrt{2}+28\right)\left(10\sqrt{2}-28\right)}
Rationalize the denominator of \frac{2\sqrt{2}}{10\sqrt{2}+28} by multiplying numerator and denominator by 10\sqrt{2}-28.
\frac{2\sqrt{2}\left(10\sqrt{2}-28\right)}{\left(10\sqrt{2}\right)^{2}-28^{2}}
Consider \left(10\sqrt{2}+28\right)\left(10\sqrt{2}-28\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\sqrt{2}\left(10\sqrt{2}-28\right)}{10^{2}\left(\sqrt{2}\right)^{2}-28^{2}}
Expand \left(10\sqrt{2}\right)^{2}.
\frac{2\sqrt{2}\left(10\sqrt{2}-28\right)}{100\left(\sqrt{2}\right)^{2}-28^{2}}
Calculate 10 to the power of 2 and get 100.
\frac{2\sqrt{2}\left(10\sqrt{2}-28\right)}{100\times 2-28^{2}}
The square of \sqrt{2} is 2.
\frac{2\sqrt{2}\left(10\sqrt{2}-28\right)}{200-28^{2}}
Multiply 100 and 2 to get 200.
\frac{2\sqrt{2}\left(10\sqrt{2}-28\right)}{200-784}
Calculate 28 to the power of 2 and get 784.
\frac{2\sqrt{2}\left(10\sqrt{2}-28\right)}{-584}
Subtract 784 from 200 to get -584.
-\frac{1}{292}\sqrt{2}\left(10\sqrt{2}-28\right)
Divide 2\sqrt{2}\left(10\sqrt{2}-28\right) by -584 to get -\frac{1}{292}\sqrt{2}\left(10\sqrt{2}-28\right).
-\frac{5}{146}\left(\sqrt{2}\right)^{2}+\frac{7}{73}\sqrt{2}
Use the distributive property to multiply -\frac{1}{292}\sqrt{2} by 10\sqrt{2}-28.
-\frac{5}{146}\times 2+\frac{7}{73}\sqrt{2}
The square of \sqrt{2} is 2.
-\frac{5}{73}+\frac{7}{73}\sqrt{2}
Multiply -\frac{5}{146} and 2 to get -\frac{5}{73}.