Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\sqrt{7}-3\sqrt{6}\right)\left(\sqrt{2}+3\sqrt{7}\right)}{\left(\sqrt{2}-3\sqrt{7}\right)\left(\sqrt{2}+3\sqrt{7}\right)}
Rationalize the denominator of \frac{\sqrt{7}-3\sqrt{6}}{\sqrt{2}-3\sqrt{7}} by multiplying numerator and denominator by \sqrt{2}+3\sqrt{7}.
\frac{\left(\sqrt{7}-3\sqrt{6}\right)\left(\sqrt{2}+3\sqrt{7}\right)}{\left(\sqrt{2}\right)^{2}-\left(-3\sqrt{7}\right)^{2}}
Consider \left(\sqrt{2}-3\sqrt{7}\right)\left(\sqrt{2}+3\sqrt{7}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{7}-3\sqrt{6}\right)\left(\sqrt{2}+3\sqrt{7}\right)}{2-\left(-3\sqrt{7}\right)^{2}}
The square of \sqrt{2} is 2.
\frac{\left(\sqrt{7}-3\sqrt{6}\right)\left(\sqrt{2}+3\sqrt{7}\right)}{2-\left(-3\right)^{2}\left(\sqrt{7}\right)^{2}}
Expand \left(-3\sqrt{7}\right)^{2}.
\frac{\left(\sqrt{7}-3\sqrt{6}\right)\left(\sqrt{2}+3\sqrt{7}\right)}{2-9\left(\sqrt{7}\right)^{2}}
Calculate -3 to the power of 2 and get 9.
\frac{\left(\sqrt{7}-3\sqrt{6}\right)\left(\sqrt{2}+3\sqrt{7}\right)}{2-9\times 7}
The square of \sqrt{7} is 7.
\frac{\left(\sqrt{7}-3\sqrt{6}\right)\left(\sqrt{2}+3\sqrt{7}\right)}{2-63}
Multiply 9 and 7 to get 63.
\frac{\left(\sqrt{7}-3\sqrt{6}\right)\left(\sqrt{2}+3\sqrt{7}\right)}{-61}
Subtract 63 from 2 to get -61.
\frac{\sqrt{7}\sqrt{2}+3\left(\sqrt{7}\right)^{2}-3\sqrt{6}\sqrt{2}-9\sqrt{6}\sqrt{7}}{-61}
Apply the distributive property by multiplying each term of \sqrt{7}-3\sqrt{6} by each term of \sqrt{2}+3\sqrt{7}.
\frac{\sqrt{14}+3\left(\sqrt{7}\right)^{2}-3\sqrt{6}\sqrt{2}-9\sqrt{6}\sqrt{7}}{-61}
To multiply \sqrt{7} and \sqrt{2}, multiply the numbers under the square root.
\frac{\sqrt{14}+3\times 7-3\sqrt{6}\sqrt{2}-9\sqrt{6}\sqrt{7}}{-61}
The square of \sqrt{7} is 7.
\frac{\sqrt{14}+21-3\sqrt{6}\sqrt{2}-9\sqrt{6}\sqrt{7}}{-61}
Multiply 3 and 7 to get 21.
\frac{\sqrt{14}+21-3\sqrt{2}\sqrt{3}\sqrt{2}-9\sqrt{6}\sqrt{7}}{-61}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
\frac{\sqrt{14}+21-3\times 2\sqrt{3}-9\sqrt{6}\sqrt{7}}{-61}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{\sqrt{14}+21-6\sqrt{3}-9\sqrt{6}\sqrt{7}}{-61}
Multiply -3 and 2 to get -6.
\frac{\sqrt{14}+21-6\sqrt{3}-9\sqrt{42}}{-61}
To multiply \sqrt{6} and \sqrt{7}, multiply the numbers under the square root.
\frac{-\sqrt{14}-21+6\sqrt{3}+9\sqrt{42}}{61}
Multiply both numerator and denominator by -1.