Evaluate
\frac{6\sqrt{3}+9\sqrt{42}-\sqrt{14}-21}{61}\approx 0.72093957
Share
Copied to clipboard
\frac{\left(\sqrt{7}-3\sqrt{6}\right)\left(\sqrt{2}+3\sqrt{7}\right)}{\left(\sqrt{2}-3\sqrt{7}\right)\left(\sqrt{2}+3\sqrt{7}\right)}
Rationalize the denominator of \frac{\sqrt{7}-3\sqrt{6}}{\sqrt{2}-3\sqrt{7}} by multiplying numerator and denominator by \sqrt{2}+3\sqrt{7}.
\frac{\left(\sqrt{7}-3\sqrt{6}\right)\left(\sqrt{2}+3\sqrt{7}\right)}{\left(\sqrt{2}\right)^{2}-\left(-3\sqrt{7}\right)^{2}}
Consider \left(\sqrt{2}-3\sqrt{7}\right)\left(\sqrt{2}+3\sqrt{7}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{7}-3\sqrt{6}\right)\left(\sqrt{2}+3\sqrt{7}\right)}{2-\left(-3\sqrt{7}\right)^{2}}
The square of \sqrt{2} is 2.
\frac{\left(\sqrt{7}-3\sqrt{6}\right)\left(\sqrt{2}+3\sqrt{7}\right)}{2-\left(-3\right)^{2}\left(\sqrt{7}\right)^{2}}
Expand \left(-3\sqrt{7}\right)^{2}.
\frac{\left(\sqrt{7}-3\sqrt{6}\right)\left(\sqrt{2}+3\sqrt{7}\right)}{2-9\left(\sqrt{7}\right)^{2}}
Calculate -3 to the power of 2 and get 9.
\frac{\left(\sqrt{7}-3\sqrt{6}\right)\left(\sqrt{2}+3\sqrt{7}\right)}{2-9\times 7}
The square of \sqrt{7} is 7.
\frac{\left(\sqrt{7}-3\sqrt{6}\right)\left(\sqrt{2}+3\sqrt{7}\right)}{2-63}
Multiply 9 and 7 to get 63.
\frac{\left(\sqrt{7}-3\sqrt{6}\right)\left(\sqrt{2}+3\sqrt{7}\right)}{-61}
Subtract 63 from 2 to get -61.
\frac{\sqrt{7}\sqrt{2}+3\left(\sqrt{7}\right)^{2}-3\sqrt{6}\sqrt{2}-9\sqrt{6}\sqrt{7}}{-61}
Apply the distributive property by multiplying each term of \sqrt{7}-3\sqrt{6} by each term of \sqrt{2}+3\sqrt{7}.
\frac{\sqrt{14}+3\left(\sqrt{7}\right)^{2}-3\sqrt{6}\sqrt{2}-9\sqrt{6}\sqrt{7}}{-61}
To multiply \sqrt{7} and \sqrt{2}, multiply the numbers under the square root.
\frac{\sqrt{14}+3\times 7-3\sqrt{6}\sqrt{2}-9\sqrt{6}\sqrt{7}}{-61}
The square of \sqrt{7} is 7.
\frac{\sqrt{14}+21-3\sqrt{6}\sqrt{2}-9\sqrt{6}\sqrt{7}}{-61}
Multiply 3 and 7 to get 21.
\frac{\sqrt{14}+21-3\sqrt{2}\sqrt{3}\sqrt{2}-9\sqrt{6}\sqrt{7}}{-61}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
\frac{\sqrt{14}+21-3\times 2\sqrt{3}-9\sqrt{6}\sqrt{7}}{-61}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{\sqrt{14}+21-6\sqrt{3}-9\sqrt{6}\sqrt{7}}{-61}
Multiply -3 and 2 to get -6.
\frac{\sqrt{14}+21-6\sqrt{3}-9\sqrt{42}}{-61}
To multiply \sqrt{6} and \sqrt{7}, multiply the numbers under the square root.
\frac{-\sqrt{14}-21+6\sqrt{3}+9\sqrt{42}}{61}
Multiply both numerator and denominator by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}