Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{7}\left(\sqrt{10}-3\right)}{\left(\sqrt{10}+3\right)\left(\sqrt{10}-3\right)}
Rationalize the denominator of \frac{\sqrt{7}}{\sqrt{10}+3} by multiplying numerator and denominator by \sqrt{10}-3.
\frac{\sqrt{7}\left(\sqrt{10}-3\right)}{\left(\sqrt{10}\right)^{2}-3^{2}}
Consider \left(\sqrt{10}+3\right)\left(\sqrt{10}-3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{7}\left(\sqrt{10}-3\right)}{10-9}
Square \sqrt{10}. Square 3.
\frac{\sqrt{7}\left(\sqrt{10}-3\right)}{1}
Subtract 9 from 10 to get 1.
\sqrt{7}\left(\sqrt{10}-3\right)
Anything divided by one gives itself.
\sqrt{7}\sqrt{10}-3\sqrt{7}
Use the distributive property to multiply \sqrt{7} by \sqrt{10}-3.
\sqrt{70}-3\sqrt{7}
To multiply \sqrt{7} and \sqrt{10}, multiply the numbers under the square root.