Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{5\sqrt{2}-\sqrt{3}}{2\sqrt{3}}-\frac{10-\sqrt{6}}{2\sqrt{6}}
Factor 50=5^{2}\times 2. Rewrite the square root of the product \sqrt{5^{2}\times 2} as the product of square roots \sqrt{5^{2}}\sqrt{2}. Take the square root of 5^{2}.
\frac{\left(5\sqrt{2}-\sqrt{3}\right)\sqrt{3}}{2\left(\sqrt{3}\right)^{2}}-\frac{10-\sqrt{6}}{2\sqrt{6}}
Rationalize the denominator of \frac{5\sqrt{2}-\sqrt{3}}{2\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\left(5\sqrt{2}-\sqrt{3}\right)\sqrt{3}}{2\times 3}-\frac{10-\sqrt{6}}{2\sqrt{6}}
The square of \sqrt{3} is 3.
\frac{\left(5\sqrt{2}-\sqrt{3}\right)\sqrt{3}}{6}-\frac{10-\sqrt{6}}{2\sqrt{6}}
Multiply 2 and 3 to get 6.
\frac{\left(5\sqrt{2}-\sqrt{3}\right)\sqrt{3}}{6}-\frac{\left(10-\sqrt{6}\right)\sqrt{6}}{2\left(\sqrt{6}\right)^{2}}
Rationalize the denominator of \frac{10-\sqrt{6}}{2\sqrt{6}} by multiplying numerator and denominator by \sqrt{6}.
\frac{\left(5\sqrt{2}-\sqrt{3}\right)\sqrt{3}}{6}-\frac{\left(10-\sqrt{6}\right)\sqrt{6}}{2\times 6}
The square of \sqrt{6} is 6.
\frac{\left(5\sqrt{2}-\sqrt{3}\right)\sqrt{3}}{6}-\frac{\left(10-\sqrt{6}\right)\sqrt{6}}{12}
Multiply 2 and 6 to get 12.
\frac{2\left(5\sqrt{2}-\sqrt{3}\right)\sqrt{3}}{12}-\frac{\left(10-\sqrt{6}\right)\sqrt{6}}{12}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 6 and 12 is 12. Multiply \frac{\left(5\sqrt{2}-\sqrt{3}\right)\sqrt{3}}{6} times \frac{2}{2}.
\frac{2\left(5\sqrt{2}-\sqrt{3}\right)\sqrt{3}-\left(10-\sqrt{6}\right)\sqrt{6}}{12}
Since \frac{2\left(5\sqrt{2}-\sqrt{3}\right)\sqrt{3}}{12} and \frac{\left(10-\sqrt{6}\right)\sqrt{6}}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{10\sqrt{6}-6-10\sqrt{6}+6}{12}
Do the multiplications in 2\left(5\sqrt{2}-\sqrt{3}\right)\sqrt{3}-\left(10-\sqrt{6}\right)\sqrt{6}.
\frac{0}{12}
Do the calculations in 10\sqrt{6}-6-10\sqrt{6}+6.
0
Zero divided by any non-zero number gives zero.