Evaluate
6\sqrt{2}\approx 8.485281374
Share
Copied to clipboard
\frac{5\sqrt{2}\sqrt{32}}{\sqrt{8}}-4\sqrt{2}
Factor 50=5^{2}\times 2. Rewrite the square root of the product \sqrt{5^{2}\times 2} as the product of square roots \sqrt{5^{2}}\sqrt{2}. Take the square root of 5^{2}.
\frac{5\sqrt{2}\times 4\sqrt{2}}{\sqrt{8}}-4\sqrt{2}
Factor 32=4^{2}\times 2. Rewrite the square root of the product \sqrt{4^{2}\times 2} as the product of square roots \sqrt{4^{2}}\sqrt{2}. Take the square root of 4^{2}.
\frac{20\sqrt{2}\sqrt{2}}{\sqrt{8}}-4\sqrt{2}
Multiply 5 and 4 to get 20.
\frac{20\times 2}{\sqrt{8}}-4\sqrt{2}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{40}{\sqrt{8}}-4\sqrt{2}
Multiply 20 and 2 to get 40.
\frac{40}{2\sqrt{2}}-4\sqrt{2}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{40\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}-4\sqrt{2}
Rationalize the denominator of \frac{40}{2\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{40\sqrt{2}}{2\times 2}-4\sqrt{2}
The square of \sqrt{2} is 2.
10\sqrt{2}-4\sqrt{2}
Cancel out 2\times 2 in both numerator and denominator.
6\sqrt{2}
Combine 10\sqrt{2} and -4\sqrt{2} to get 6\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}