Evaluate
\frac{\sqrt{5}-1}{4}\approx 0.309016994
Share
Copied to clipboard
\frac{\sqrt{5}-2}{1-\sqrt{5}-\left(-2\right)}
To find the opposite of \sqrt{5}-2, find the opposite of each term.
\frac{\sqrt{5}-2}{1-\sqrt{5}+2}
The opposite of -2 is 2.
\frac{\sqrt{5}-2}{3-\sqrt{5}}
Add 1 and 2 to get 3.
\frac{\left(\sqrt{5}-2\right)\left(3+\sqrt{5}\right)}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}
Rationalize the denominator of \frac{\sqrt{5}-2}{3-\sqrt{5}} by multiplying numerator and denominator by 3+\sqrt{5}.
\frac{\left(\sqrt{5}-2\right)\left(3+\sqrt{5}\right)}{3^{2}-\left(\sqrt{5}\right)^{2}}
Consider \left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{5}-2\right)\left(3+\sqrt{5}\right)}{9-5}
Square 3. Square \sqrt{5}.
\frac{\left(\sqrt{5}-2\right)\left(3+\sqrt{5}\right)}{4}
Subtract 5 from 9 to get 4.
\frac{3\sqrt{5}+\left(\sqrt{5}\right)^{2}-6-2\sqrt{5}}{4}
Apply the distributive property by multiplying each term of \sqrt{5}-2 by each term of 3+\sqrt{5}.
\frac{3\sqrt{5}+5-6-2\sqrt{5}}{4}
The square of \sqrt{5} is 5.
\frac{3\sqrt{5}-1-2\sqrt{5}}{4}
Subtract 6 from 5 to get -1.
\frac{\sqrt{5}-1}{4}
Combine 3\sqrt{5} and -2\sqrt{5} to get \sqrt{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}