Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\sqrt{5}-1\right)\left(\sqrt{2}-1\right)}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}
Rationalize the denominator of \frac{\sqrt{5}-1}{\sqrt{2}+1} by multiplying numerator and denominator by \sqrt{2}-1.
\frac{\left(\sqrt{5}-1\right)\left(\sqrt{2}-1\right)}{\left(\sqrt{2}\right)^{2}-1^{2}}
Consider \left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{5}-1\right)\left(\sqrt{2}-1\right)}{2-1}
Square \sqrt{2}. Square 1.
\frac{\left(\sqrt{5}-1\right)\left(\sqrt{2}-1\right)}{1}
Subtract 1 from 2 to get 1.
\left(\sqrt{5}-1\right)\left(\sqrt{2}-1\right)
Anything divided by one gives itself.
\sqrt{5}\sqrt{2}-\sqrt{5}-\sqrt{2}+1
Apply the distributive property by multiplying each term of \sqrt{5}-1 by each term of \sqrt{2}-1.
\sqrt{10}-\sqrt{5}-\sqrt{2}+1
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.