Evaluate
\frac{\sqrt{5}-1}{2}\approx 0.618033989
Factor
\frac{\sqrt{5} - 1}{2} = 0.6180339887498949
Share
Copied to clipboard
\frac{2\left(\sqrt{5}-\sqrt{2}\right)}{6}-\frac{3\left(2\sqrt{2}+5\right)}{6}+\frac{\sqrt{5}+8\sqrt{2}+12}{6}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 2 is 6. Multiply \frac{\sqrt{5}-\sqrt{2}}{3} times \frac{2}{2}. Multiply \frac{2\sqrt{2}+5}{2} times \frac{3}{3}.
\frac{2\left(\sqrt{5}-\sqrt{2}\right)-3\left(2\sqrt{2}+5\right)}{6}+\frac{\sqrt{5}+8\sqrt{2}+12}{6}
Since \frac{2\left(\sqrt{5}-\sqrt{2}\right)}{6} and \frac{3\left(2\sqrt{2}+5\right)}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{2\sqrt{5}-2\sqrt{2}-6\sqrt{2}-15}{6}+\frac{\sqrt{5}+8\sqrt{2}+12}{6}
Do the multiplications in 2\left(\sqrt{5}-\sqrt{2}\right)-3\left(2\sqrt{2}+5\right).
\frac{2\sqrt{5}-8\sqrt{2}-15}{6}+\frac{\sqrt{5}+8\sqrt{2}+12}{6}
Do the calculations in 2\sqrt{5}-2\sqrt{2}-6\sqrt{2}-15.
\frac{2\sqrt{5}-8\sqrt{2}-15+\sqrt{5}+8\sqrt{2}+12}{6}
Since \frac{2\sqrt{5}-8\sqrt{2}-15}{6} and \frac{\sqrt{5}+8\sqrt{2}+12}{6} have the same denominator, add them by adding their numerators.
\frac{3\sqrt{5}-3}{6}
Do the calculations in 2\sqrt{5}-8\sqrt{2}-15+\sqrt{5}+8\sqrt{2}+12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}