Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{5}\left(2\sqrt{7}+\sqrt{3}\right)}{\left(2\sqrt{7}-\sqrt{3}\right)\left(2\sqrt{7}+\sqrt{3}\right)}-\frac{\sqrt{2}}{\sqrt{3}-\sqrt{2}}
Rationalize the denominator of \frac{\sqrt{5}}{2\sqrt{7}-\sqrt{3}} by multiplying numerator and denominator by 2\sqrt{7}+\sqrt{3}.
\frac{\sqrt{5}\left(2\sqrt{7}+\sqrt{3}\right)}{\left(2\sqrt{7}\right)^{2}-\left(\sqrt{3}\right)^{2}}-\frac{\sqrt{2}}{\sqrt{3}-\sqrt{2}}
Consider \left(2\sqrt{7}-\sqrt{3}\right)\left(2\sqrt{7}+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{5}\left(2\sqrt{7}+\sqrt{3}\right)}{2^{2}\left(\sqrt{7}\right)^{2}-\left(\sqrt{3}\right)^{2}}-\frac{\sqrt{2}}{\sqrt{3}-\sqrt{2}}
Expand \left(2\sqrt{7}\right)^{2}.
\frac{\sqrt{5}\left(2\sqrt{7}+\sqrt{3}\right)}{4\left(\sqrt{7}\right)^{2}-\left(\sqrt{3}\right)^{2}}-\frac{\sqrt{2}}{\sqrt{3}-\sqrt{2}}
Calculate 2 to the power of 2 and get 4.
\frac{\sqrt{5}\left(2\sqrt{7}+\sqrt{3}\right)}{4\times 7-\left(\sqrt{3}\right)^{2}}-\frac{\sqrt{2}}{\sqrt{3}-\sqrt{2}}
The square of \sqrt{7} is 7.
\frac{\sqrt{5}\left(2\sqrt{7}+\sqrt{3}\right)}{28-\left(\sqrt{3}\right)^{2}}-\frac{\sqrt{2}}{\sqrt{3}-\sqrt{2}}
Multiply 4 and 7 to get 28.
\frac{\sqrt{5}\left(2\sqrt{7}+\sqrt{3}\right)}{28-3}-\frac{\sqrt{2}}{\sqrt{3}-\sqrt{2}}
The square of \sqrt{3} is 3.
\frac{\sqrt{5}\left(2\sqrt{7}+\sqrt{3}\right)}{25}-\frac{\sqrt{2}}{\sqrt{3}-\sqrt{2}}
Subtract 3 from 28 to get 25.
\frac{\sqrt{5}\left(2\sqrt{7}+\sqrt{3}\right)}{25}-\frac{\sqrt{2}\left(\sqrt{3}+\sqrt{2}\right)}{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}
Rationalize the denominator of \frac{\sqrt{2}}{\sqrt{3}-\sqrt{2}} by multiplying numerator and denominator by \sqrt{3}+\sqrt{2}.
\frac{\sqrt{5}\left(2\sqrt{7}+\sqrt{3}\right)}{25}-\frac{\sqrt{2}\left(\sqrt{3}+\sqrt{2}\right)}{\left(\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Consider \left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{5}\left(2\sqrt{7}+\sqrt{3}\right)}{25}-\frac{\sqrt{2}\left(\sqrt{3}+\sqrt{2}\right)}{3-2}
Square \sqrt{3}. Square \sqrt{2}.
\frac{\sqrt{5}\left(2\sqrt{7}+\sqrt{3}\right)}{25}-\frac{\sqrt{2}\left(\sqrt{3}+\sqrt{2}\right)}{1}
Subtract 2 from 3 to get 1.
\frac{\sqrt{5}\left(2\sqrt{7}+\sqrt{3}\right)}{25}-\sqrt{2}\left(\sqrt{3}+\sqrt{2}\right)
Anything divided by one gives itself.
\frac{2\sqrt{5}\sqrt{7}+\sqrt{5}\sqrt{3}}{25}-\sqrt{2}\left(\sqrt{3}+\sqrt{2}\right)
Use the distributive property to multiply \sqrt{5} by 2\sqrt{7}+\sqrt{3}.
\frac{2\sqrt{35}+\sqrt{5}\sqrt{3}}{25}-\sqrt{2}\left(\sqrt{3}+\sqrt{2}\right)
To multiply \sqrt{5} and \sqrt{7}, multiply the numbers under the square root.
\frac{2\sqrt{35}+\sqrt{15}}{25}-\sqrt{2}\left(\sqrt{3}+\sqrt{2}\right)
To multiply \sqrt{5} and \sqrt{3}, multiply the numbers under the square root.
\frac{2\sqrt{35}+\sqrt{15}}{25}-\left(\sqrt{2}\sqrt{3}+\left(\sqrt{2}\right)^{2}\right)
Use the distributive property to multiply \sqrt{2} by \sqrt{3}+\sqrt{2}.
\frac{2\sqrt{35}+\sqrt{15}}{25}-\left(\sqrt{6}+\left(\sqrt{2}\right)^{2}\right)
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\frac{2\sqrt{35}+\sqrt{15}}{25}-\left(\sqrt{6}+2\right)
The square of \sqrt{2} is 2.
\frac{2\sqrt{35}+\sqrt{15}}{25}-\sqrt{6}-2
To find the opposite of \sqrt{6}+2, find the opposite of each term.
\frac{2\sqrt{35}+\sqrt{15}}{25}+\frac{25\left(-\sqrt{6}-2\right)}{25}
To add or subtract expressions, expand them to make their denominators the same. Multiply -\sqrt{6}-2 times \frac{25}{25}.
\frac{2\sqrt{35}+\sqrt{15}+25\left(-\sqrt{6}-2\right)}{25}
Since \frac{2\sqrt{35}+\sqrt{15}}{25} and \frac{25\left(-\sqrt{6}-2\right)}{25} have the same denominator, add them by adding their numerators.
\frac{2\sqrt{35}+\sqrt{15}-25\sqrt{6}-50}{25}
Do the multiplications in 2\sqrt{35}+\sqrt{15}+25\left(-\sqrt{6}-2\right).