\frac { \sqrt { 5 } \times \sqrt { 15 } } { \sqrt { 3 } } \quad \text { (2) } \quad ( \sqrt { 3 } + 1 ) ^ { 2 } - 6 \sqrt { \frac { 1 } { 3 } }
Evaluate
18\sqrt{3}+40\approx 71.176914536
Factor
2 {(9 \sqrt{3} + 20)} = 71.176914536
Share
Copied to clipboard
\frac{\sqrt{5}\sqrt{5}\sqrt{3}}{\sqrt{3}}\times 2\left(\sqrt{3}+1\right)^{2}-6\sqrt{\frac{1}{3}}
Factor 15=5\times 3. Rewrite the square root of the product \sqrt{5\times 3} as the product of square roots \sqrt{5}\sqrt{3}.
\frac{5\sqrt{3}}{\sqrt{3}}\times 2\left(\sqrt{3}+1\right)^{2}-6\sqrt{\frac{1}{3}}
Multiply \sqrt{5} and \sqrt{5} to get 5.
\frac{5\sqrt{3}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\times 2\left(\sqrt{3}+1\right)^{2}-6\sqrt{\frac{1}{3}}
Rationalize the denominator of \frac{5\sqrt{3}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{5\sqrt{3}\sqrt{3}}{3}\times 2\left(\sqrt{3}+1\right)^{2}-6\sqrt{\frac{1}{3}}
The square of \sqrt{3} is 3.
\frac{5\times 3}{3}\times 2\left(\sqrt{3}+1\right)^{2}-6\sqrt{\frac{1}{3}}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{15}{3}\times 2\left(\sqrt{3}+1\right)^{2}-6\sqrt{\frac{1}{3}}
Multiply 5 and 3 to get 15.
5\times 2\left(\sqrt{3}+1\right)^{2}-6\sqrt{\frac{1}{3}}
Divide 15 by 3 to get 5.
10\left(\sqrt{3}+1\right)^{2}-6\sqrt{\frac{1}{3}}
Multiply 5 and 2 to get 10.
10\left(\left(\sqrt{3}\right)^{2}+2\sqrt{3}+1\right)-6\sqrt{\frac{1}{3}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{3}+1\right)^{2}.
10\left(3+2\sqrt{3}+1\right)-6\sqrt{\frac{1}{3}}
The square of \sqrt{3} is 3.
10\left(4+2\sqrt{3}\right)-6\sqrt{\frac{1}{3}}
Add 3 and 1 to get 4.
40+20\sqrt{3}-6\sqrt{\frac{1}{3}}
Use the distributive property to multiply 10 by 4+2\sqrt{3}.
40+20\sqrt{3}-6\times \frac{\sqrt{1}}{\sqrt{3}}
Rewrite the square root of the division \sqrt{\frac{1}{3}} as the division of square roots \frac{\sqrt{1}}{\sqrt{3}}.
40+20\sqrt{3}-6\times \frac{1}{\sqrt{3}}
Calculate the square root of 1 and get 1.
40+20\sqrt{3}-6\times \frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{1}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
40+20\sqrt{3}-6\times \frac{\sqrt{3}}{3}
The square of \sqrt{3} is 3.
40+20\sqrt{3}-2\sqrt{3}
Cancel out 3, the greatest common factor in 6 and 3.
40+18\sqrt{3}
Combine 20\sqrt{3} and -2\sqrt{3} to get 18\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}