Evaluate
\frac{\sqrt{2}+\sqrt{10}}{8}\approx 0.572061403
Share
Copied to clipboard
\frac{\left(\sqrt{5}+4\right)\left(\sqrt{2}-3\sqrt{10}\right)}{\left(\sqrt{2}+3\sqrt{10}\right)\left(\sqrt{2}-3\sqrt{10}\right)}
Rationalize the denominator of \frac{\sqrt{5}+4}{\sqrt{2}+3\sqrt{10}} by multiplying numerator and denominator by \sqrt{2}-3\sqrt{10}.
\frac{\left(\sqrt{5}+4\right)\left(\sqrt{2}-3\sqrt{10}\right)}{\left(\sqrt{2}\right)^{2}-\left(3\sqrt{10}\right)^{2}}
Consider \left(\sqrt{2}+3\sqrt{10}\right)\left(\sqrt{2}-3\sqrt{10}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{5}+4\right)\left(\sqrt{2}-3\sqrt{10}\right)}{2-\left(3\sqrt{10}\right)^{2}}
The square of \sqrt{2} is 2.
\frac{\left(\sqrt{5}+4\right)\left(\sqrt{2}-3\sqrt{10}\right)}{2-3^{2}\left(\sqrt{10}\right)^{2}}
Expand \left(3\sqrt{10}\right)^{2}.
\frac{\left(\sqrt{5}+4\right)\left(\sqrt{2}-3\sqrt{10}\right)}{2-9\left(\sqrt{10}\right)^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{\left(\sqrt{5}+4\right)\left(\sqrt{2}-3\sqrt{10}\right)}{2-9\times 10}
The square of \sqrt{10} is 10.
\frac{\left(\sqrt{5}+4\right)\left(\sqrt{2}-3\sqrt{10}\right)}{2-90}
Multiply 9 and 10 to get 90.
\frac{\left(\sqrt{5}+4\right)\left(\sqrt{2}-3\sqrt{10}\right)}{-88}
Subtract 90 from 2 to get -88.
\frac{\sqrt{5}\sqrt{2}-3\sqrt{5}\sqrt{10}+4\sqrt{2}-12\sqrt{10}}{-88}
Apply the distributive property by multiplying each term of \sqrt{5}+4 by each term of \sqrt{2}-3\sqrt{10}.
\frac{\sqrt{10}-3\sqrt{5}\sqrt{10}+4\sqrt{2}-12\sqrt{10}}{-88}
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
\frac{\sqrt{10}-3\sqrt{5}\sqrt{5}\sqrt{2}+4\sqrt{2}-12\sqrt{10}}{-88}
Factor 10=5\times 2. Rewrite the square root of the product \sqrt{5\times 2} as the product of square roots \sqrt{5}\sqrt{2}.
\frac{\sqrt{10}-3\times 5\sqrt{2}+4\sqrt{2}-12\sqrt{10}}{-88}
Multiply \sqrt{5} and \sqrt{5} to get 5.
\frac{\sqrt{10}-15\sqrt{2}+4\sqrt{2}-12\sqrt{10}}{-88}
Multiply -3 and 5 to get -15.
\frac{\sqrt{10}-11\sqrt{2}-12\sqrt{10}}{-88}
Combine -15\sqrt{2} and 4\sqrt{2} to get -11\sqrt{2}.
\frac{-11\sqrt{10}-11\sqrt{2}}{-88}
Combine \sqrt{10} and -12\sqrt{10} to get -11\sqrt{10}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}