Evaluate
\frac{\sqrt{10}}{2}-1\approx 0.58113883
Share
Copied to clipboard
\frac{\sqrt{5}+2\sqrt{2}}{\sqrt{2}}-\left(\sqrt{3}\right)^{2}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{\left(\sqrt{5}+2\sqrt{2}\right)\sqrt{2}}{\left(\sqrt{2}\right)^{2}}-\left(\sqrt{3}\right)^{2}
Rationalize the denominator of \frac{\sqrt{5}+2\sqrt{2}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\left(\sqrt{5}+2\sqrt{2}\right)\sqrt{2}}{2}-\left(\sqrt{3}\right)^{2}
The square of \sqrt{2} is 2.
\frac{\left(\sqrt{5}+2\sqrt{2}\right)\sqrt{2}}{2}-3
The square of \sqrt{3} is 3.
\frac{\left(\sqrt{5}+2\sqrt{2}\right)\sqrt{2}}{2}-\frac{3\times 2}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{2}{2}.
\frac{\left(\sqrt{5}+2\sqrt{2}\right)\sqrt{2}-3\times 2}{2}
Since \frac{\left(\sqrt{5}+2\sqrt{2}\right)\sqrt{2}}{2} and \frac{3\times 2}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{\sqrt{10}+4-6}{2}
Do the multiplications in \left(\sqrt{5}+2\sqrt{2}\right)\sqrt{2}-3\times 2.
\frac{\sqrt{10}-2}{2}
Do the calculations in \sqrt{10}+4-6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}