Evaluate
\frac{9\sqrt{2}}{13}\approx 0.979070928
Share
Copied to clipboard
\frac{\sqrt{5}+\frac{\sqrt{5}}{\left(\sqrt{5}\right)^{2}}}{\sqrt{10}-\frac{4}{\sqrt{90}}}
Rationalize the denominator of \frac{1}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{\sqrt{5}+\frac{\sqrt{5}}{5}}{\sqrt{10}-\frac{4}{\sqrt{90}}}
The square of \sqrt{5} is 5.
\frac{\frac{6}{5}\sqrt{5}}{\sqrt{10}-\frac{4}{\sqrt{90}}}
Combine \sqrt{5} and \frac{\sqrt{5}}{5} to get \frac{6}{5}\sqrt{5}.
\frac{\frac{6}{5}\sqrt{5}}{\sqrt{10}-\frac{4}{3\sqrt{10}}}
Factor 90=3^{2}\times 10. Rewrite the square root of the product \sqrt{3^{2}\times 10} as the product of square roots \sqrt{3^{2}}\sqrt{10}. Take the square root of 3^{2}.
\frac{\frac{6}{5}\sqrt{5}}{\sqrt{10}-\frac{4\sqrt{10}}{3\left(\sqrt{10}\right)^{2}}}
Rationalize the denominator of \frac{4}{3\sqrt{10}} by multiplying numerator and denominator by \sqrt{10}.
\frac{\frac{6}{5}\sqrt{5}}{\sqrt{10}-\frac{4\sqrt{10}}{3\times 10}}
The square of \sqrt{10} is 10.
\frac{\frac{6}{5}\sqrt{5}}{\sqrt{10}-\frac{2\sqrt{10}}{3\times 5}}
Cancel out 2 in both numerator and denominator.
\frac{\frac{6}{5}\sqrt{5}}{\sqrt{10}-\frac{2\sqrt{10}}{15}}
Multiply 3 and 5 to get 15.
\frac{\frac{6}{5}\sqrt{5}}{\frac{13}{15}\sqrt{10}}
Combine \sqrt{10} and -\frac{2\sqrt{10}}{15} to get \frac{13}{15}\sqrt{10}.
\frac{\frac{6}{5}\sqrt{5}\sqrt{10}}{\frac{13}{15}\left(\sqrt{10}\right)^{2}}
Rationalize the denominator of \frac{\frac{6}{5}\sqrt{5}}{\frac{13}{15}\sqrt{10}} by multiplying numerator and denominator by \sqrt{10}.
\frac{\frac{6}{5}\sqrt{5}\sqrt{10}}{\frac{13}{15}\times 10}
The square of \sqrt{10} is 10.
\frac{\frac{6}{5}\sqrt{5}\sqrt{5}\sqrt{2}}{\frac{13}{15}\times 10}
Factor 10=5\times 2. Rewrite the square root of the product \sqrt{5\times 2} as the product of square roots \sqrt{5}\sqrt{2}.
\frac{\frac{6}{5}\times 5\sqrt{2}}{\frac{13}{15}\times 10}
Multiply \sqrt{5} and \sqrt{5} to get 5.
\frac{\frac{6}{5}\times 5\sqrt{2}}{\frac{13\times 10}{15}}
Express \frac{13}{15}\times 10 as a single fraction.
\frac{\frac{6}{5}\times 5\sqrt{2}}{\frac{130}{15}}
Multiply 13 and 10 to get 130.
\frac{\frac{6}{5}\times 5\sqrt{2}}{\frac{26}{3}}
Reduce the fraction \frac{130}{15} to lowest terms by extracting and canceling out 5.
\frac{6\sqrt{2}}{\frac{26}{3}}
Cancel out 5 and 5.
\frac{6\sqrt{2}\times 3}{26}
Divide 6\sqrt{2} by \frac{26}{3} by multiplying 6\sqrt{2} by the reciprocal of \frac{26}{3}.
\frac{3}{13}\sqrt{2}\times 3
Divide 6\sqrt{2}\times 3 by 26 to get \frac{3}{13}\sqrt{2}\times 3.
\frac{3\times 3}{13}\sqrt{2}
Express \frac{3}{13}\times 3 as a single fraction.
\frac{9}{13}\sqrt{2}
Multiply 3 and 3 to get 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}