Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{34}\sqrt{\frac{125}{18}}}{2}
Reduce the fraction \frac{250}{36} to lowest terms by extracting and canceling out 2.
\frac{\sqrt{34}\times \frac{\sqrt{125}}{\sqrt{18}}}{2}
Rewrite the square root of the division \sqrt{\frac{125}{18}} as the division of square roots \frac{\sqrt{125}}{\sqrt{18}}.
\frac{\sqrt{34}\times \frac{5\sqrt{5}}{\sqrt{18}}}{2}
Factor 125=5^{2}\times 5. Rewrite the square root of the product \sqrt{5^{2}\times 5} as the product of square roots \sqrt{5^{2}}\sqrt{5}. Take the square root of 5^{2}.
\frac{\sqrt{34}\times \frac{5\sqrt{5}}{3\sqrt{2}}}{2}
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
\frac{\sqrt{34}\times \frac{5\sqrt{5}\sqrt{2}}{3\left(\sqrt{2}\right)^{2}}}{2}
Rationalize the denominator of \frac{5\sqrt{5}}{3\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\sqrt{34}\times \frac{5\sqrt{5}\sqrt{2}}{3\times 2}}{2}
The square of \sqrt{2} is 2.
\frac{\sqrt{34}\times \frac{5\sqrt{10}}{3\times 2}}{2}
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
\frac{\sqrt{34}\times \frac{5\sqrt{10}}{6}}{2}
Multiply 3 and 2 to get 6.
\frac{\frac{\sqrt{34}\times 5\sqrt{10}}{6}}{2}
Express \sqrt{34}\times \frac{5\sqrt{10}}{6} as a single fraction.
\frac{\sqrt{34}\times 5\sqrt{10}}{6\times 2}
Express \frac{\frac{\sqrt{34}\times 5\sqrt{10}}{6}}{2} as a single fraction.
\frac{\sqrt{340}\times 5}{6\times 2}
To multiply \sqrt{34} and \sqrt{10}, multiply the numbers under the square root.
\frac{\sqrt{340}\times 5}{12}
Multiply 6 and 2 to get 12.
\frac{2\sqrt{85}\times 5}{12}
Factor 340=2^{2}\times 85. Rewrite the square root of the product \sqrt{2^{2}\times 85} as the product of square roots \sqrt{2^{2}}\sqrt{85}. Take the square root of 2^{2}.
\frac{10\sqrt{85}}{12}
Multiply 2 and 5 to get 10.
\frac{5}{6}\sqrt{85}
Divide 10\sqrt{85} by 12 to get \frac{5}{6}\sqrt{85}.