Evaluate
6\sqrt{10}+19\approx 37.973665961
Share
Copied to clipboard
\frac{\left(\sqrt{30}+3\sqrt{3}\right)\left(\sqrt{30}+3\sqrt{3}\right)}{\left(\sqrt{30}-3\sqrt{3}\right)\left(\sqrt{30}+3\sqrt{3}\right)}
Rationalize the denominator of \frac{\sqrt{30}+3\sqrt{3}}{\sqrt{30}-3\sqrt{3}} by multiplying numerator and denominator by \sqrt{30}+3\sqrt{3}.
\frac{\left(\sqrt{30}+3\sqrt{3}\right)\left(\sqrt{30}+3\sqrt{3}\right)}{\left(\sqrt{30}\right)^{2}-\left(-3\sqrt{3}\right)^{2}}
Consider \left(\sqrt{30}-3\sqrt{3}\right)\left(\sqrt{30}+3\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{30}+3\sqrt{3}\right)^{2}}{\left(\sqrt{30}\right)^{2}-\left(-3\sqrt{3}\right)^{2}}
Multiply \sqrt{30}+3\sqrt{3} and \sqrt{30}+3\sqrt{3} to get \left(\sqrt{30}+3\sqrt{3}\right)^{2}.
\frac{\left(\sqrt{30}\right)^{2}+6\sqrt{30}\sqrt{3}+9\left(\sqrt{3}\right)^{2}}{\left(\sqrt{30}\right)^{2}-\left(-3\sqrt{3}\right)^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{30}+3\sqrt{3}\right)^{2}.
\frac{30+6\sqrt{30}\sqrt{3}+9\left(\sqrt{3}\right)^{2}}{\left(\sqrt{30}\right)^{2}-\left(-3\sqrt{3}\right)^{2}}
The square of \sqrt{30} is 30.
\frac{30+6\sqrt{3}\sqrt{10}\sqrt{3}+9\left(\sqrt{3}\right)^{2}}{\left(\sqrt{30}\right)^{2}-\left(-3\sqrt{3}\right)^{2}}
Factor 30=3\times 10. Rewrite the square root of the product \sqrt{3\times 10} as the product of square roots \sqrt{3}\sqrt{10}.
\frac{30+6\times 3\sqrt{10}+9\left(\sqrt{3}\right)^{2}}{\left(\sqrt{30}\right)^{2}-\left(-3\sqrt{3}\right)^{2}}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{30+18\sqrt{10}+9\left(\sqrt{3}\right)^{2}}{\left(\sqrt{30}\right)^{2}-\left(-3\sqrt{3}\right)^{2}}
Multiply 6 and 3 to get 18.
\frac{30+18\sqrt{10}+9\times 3}{\left(\sqrt{30}\right)^{2}-\left(-3\sqrt{3}\right)^{2}}
The square of \sqrt{3} is 3.
\frac{30+18\sqrt{10}+27}{\left(\sqrt{30}\right)^{2}-\left(-3\sqrt{3}\right)^{2}}
Multiply 9 and 3 to get 27.
\frac{57+18\sqrt{10}}{\left(\sqrt{30}\right)^{2}-\left(-3\sqrt{3}\right)^{2}}
Add 30 and 27 to get 57.
\frac{57+18\sqrt{10}}{30-\left(-3\sqrt{3}\right)^{2}}
The square of \sqrt{30} is 30.
\frac{57+18\sqrt{10}}{30-\left(-3\right)^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(-3\sqrt{3}\right)^{2}.
\frac{57+18\sqrt{10}}{30-9\left(\sqrt{3}\right)^{2}}
Calculate -3 to the power of 2 and get 9.
\frac{57+18\sqrt{10}}{30-9\times 3}
The square of \sqrt{3} is 3.
\frac{57+18\sqrt{10}}{30-27}
Multiply 9 and 3 to get 27.
\frac{57+18\sqrt{10}}{3}
Subtract 27 from 30 to get 3.
19+6\sqrt{10}
Divide each term of 57+18\sqrt{10} by 3 to get 19+6\sqrt{10}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}