Solve for B
B=\frac{433\sqrt{3}\left(\sqrt{3}+1\right)}{150C}
C\neq 0
Solve for C
C=\frac{433\sqrt{3}\left(\sqrt{3}+1\right)}{150B}
B\neq 0
Share
Copied to clipboard
\sqrt{3}BC+10\times 1.732=3BC
Multiply both sides of the equation by 3.
\sqrt{3}BC+17.32=3BC
Multiply 10 and 1.732 to get 17.32.
\sqrt{3}BC+17.32-3BC=0
Subtract 3BC from both sides.
\sqrt{3}BC-3BC=-17.32
Subtract 17.32 from both sides. Anything subtracted from zero gives its negation.
\left(\sqrt{3}C-3C\right)B=-17.32
Combine all terms containing B.
\frac{\left(\sqrt{3}C-3C\right)B}{\sqrt{3}C-3C}=-\frac{17.32}{\sqrt{3}C-3C}
Divide both sides by \sqrt{3}C-3C.
B=-\frac{17.32}{\sqrt{3}C-3C}
Dividing by \sqrt{3}C-3C undoes the multiplication by \sqrt{3}C-3C.
B=\frac{433\left(\sqrt{3}+3\right)}{150C}
Divide -17.32 by \sqrt{3}C-3C.
\sqrt{3}BC+10\times 1.732=3BC
Multiply both sides of the equation by 3.
\sqrt{3}BC+17.32=3BC
Multiply 10 and 1.732 to get 17.32.
\sqrt{3}BC+17.32-3BC=0
Subtract 3BC from both sides.
\sqrt{3}BC-3BC=-17.32
Subtract 17.32 from both sides. Anything subtracted from zero gives its negation.
\left(\sqrt{3}B-3B\right)C=-17.32
Combine all terms containing C.
\frac{\left(\sqrt{3}B-3B\right)C}{\sqrt{3}B-3B}=-\frac{17.32}{\sqrt{3}B-3B}
Divide both sides by \sqrt{3}B-3B.
C=-\frac{17.32}{\sqrt{3}B-3B}
Dividing by \sqrt{3}B-3B undoes the multiplication by \sqrt{3}B-3B.
C=\frac{433\left(\sqrt{3}+3\right)}{150B}
Divide -17.32 by \sqrt{3}B-3B.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}