Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\sqrt{3}}{8}x^{2}+\frac{\sqrt{3}}{4}x+\sqrt{3}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\frac{\sqrt{3}}{4}±\sqrt{\left(\frac{\sqrt{3}}{4}\right)^{2}-4\times \frac{\sqrt{3}}{8}\sqrt{3}}}{2\times \frac{\sqrt{3}}{8}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{8}\sqrt{3} for a, \frac{1}{4}\sqrt{3} for b, and \sqrt{3} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{\sqrt{3}}{4}±\sqrt{\frac{3}{16}-4\times \frac{\sqrt{3}}{8}\sqrt{3}}}{2\times \frac{\sqrt{3}}{8}}
Square \frac{1}{4}\sqrt{3}.
x=\frac{-\frac{\sqrt{3}}{4}±\sqrt{\frac{3}{16}+\left(-\frac{\sqrt{3}}{2}\right)\sqrt{3}}}{2\times \frac{\sqrt{3}}{8}}
Multiply -4 times \frac{1}{8}\sqrt{3}.
x=\frac{-\frac{\sqrt{3}}{4}±\sqrt{\frac{3}{16}-\frac{3}{2}}}{2\times \frac{\sqrt{3}}{8}}
Multiply -\frac{\sqrt{3}}{2} times \sqrt{3}.
x=\frac{-\frac{\sqrt{3}}{4}±\sqrt{-\frac{21}{16}}}{2\times \frac{\sqrt{3}}{8}}
Add \frac{3}{16} to -\frac{3}{2} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{\sqrt{3}}{4}±\frac{\sqrt{21}i}{4}}{2\times \frac{\sqrt{3}}{8}}
Take the square root of -\frac{21}{16}.
x=\frac{4\left(-\frac{\sqrt{3}}{4}±\frac{\sqrt{21}i}{4}\right)}{\sqrt{3}}
Multiply 2 times \frac{1}{8}\sqrt{3}.
x=\frac{-\sqrt{3}+\sqrt{21}i}{4\times \frac{\sqrt{3}}{4}}
Now solve the equation x=\frac{4\left(-\frac{\sqrt{3}}{4}±\frac{\sqrt{21}i}{4}\right)}{\sqrt{3}} when ± is plus. Add -\frac{\sqrt{3}}{4} to \frac{i\sqrt{21}}{4}.
x=-1+\sqrt{7}i
Divide \frac{-\sqrt{3}+i\sqrt{21}}{4} by \frac{\sqrt{3}}{4}.
x=\frac{-\sqrt{21}i-\sqrt{3}}{4\times \frac{\sqrt{3}}{4}}
Now solve the equation x=\frac{4\left(-\frac{\sqrt{3}}{4}±\frac{\sqrt{21}i}{4}\right)}{\sqrt{3}} when ± is minus. Subtract \frac{i\sqrt{21}}{4} from -\frac{\sqrt{3}}{4}.
x=-\sqrt{7}i-1
Divide \frac{-\sqrt{3}-i\sqrt{21}}{4} by \frac{\sqrt{3}}{4}.
x=-1+\sqrt{7}i x=-\sqrt{7}i-1
The equation is now solved.
\frac{\sqrt{3}}{8}x^{2}+\frac{\sqrt{3}}{4}x+\sqrt{3}=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\sqrt{3}}{8}x^{2}+\frac{\sqrt{3}}{4}x+\sqrt{3}-\sqrt{3}=-\sqrt{3}
Subtract \sqrt{3} from both sides of the equation.
\frac{\sqrt{3}}{8}x^{2}+\frac{\sqrt{3}}{4}x=-\sqrt{3}
Subtracting \sqrt{3} from itself leaves 0.
\frac{8\left(\frac{\sqrt{3}}{8}x^{2}+\frac{\sqrt{3}}{4}x\right)}{\sqrt{3}}=\frac{8\left(-\sqrt{3}\right)}{\sqrt{3}}
Divide both sides by \frac{1}{8}\sqrt{3}.
x^{2}+\frac{\sqrt{3}}{4\times \frac{\sqrt{3}}{8}}x=\frac{8\left(-\sqrt{3}\right)}{\sqrt{3}}
Dividing by \frac{1}{8}\sqrt{3} undoes the multiplication by \frac{1}{8}\sqrt{3}.
x^{2}+2x=\frac{8\left(-\sqrt{3}\right)}{\sqrt{3}}
Divide \frac{1}{4}\sqrt{3} by \frac{1}{8}\sqrt{3}.
x^{2}+2x=-8
Divide -\sqrt{3} by \frac{1}{8}\sqrt{3}.
x^{2}+2x+1^{2}=-8+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=-8+1
Square 1.
x^{2}+2x+1=-7
Add -8 to 1.
\left(x+1\right)^{2}=-7
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{-7}
Take the square root of both sides of the equation.
x+1=\sqrt{7}i x+1=-\sqrt{7}i
Simplify.
x=-1+\sqrt{7}i x=-\sqrt{7}i-1
Subtract 1 from both sides of the equation.