Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{3}\left(4+2\sqrt{5}\right)}{\left(4-2\sqrt{5}\right)\left(4+2\sqrt{5}\right)}
Rationalize the denominator of \frac{\sqrt{3}}{4-2\sqrt{5}} by multiplying numerator and denominator by 4+2\sqrt{5}.
\frac{\sqrt{3}\left(4+2\sqrt{5}\right)}{4^{2}-\left(-2\sqrt{5}\right)^{2}}
Consider \left(4-2\sqrt{5}\right)\left(4+2\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{3}\left(4+2\sqrt{5}\right)}{16-\left(-2\sqrt{5}\right)^{2}}
Calculate 4 to the power of 2 and get 16.
\frac{\sqrt{3}\left(4+2\sqrt{5}\right)}{16-\left(-2\right)^{2}\left(\sqrt{5}\right)^{2}}
Expand \left(-2\sqrt{5}\right)^{2}.
\frac{\sqrt{3}\left(4+2\sqrt{5}\right)}{16-4\left(\sqrt{5}\right)^{2}}
Calculate -2 to the power of 2 and get 4.
\frac{\sqrt{3}\left(4+2\sqrt{5}\right)}{16-4\times 5}
The square of \sqrt{5} is 5.
\frac{\sqrt{3}\left(4+2\sqrt{5}\right)}{16-20}
Multiply 4 and 5 to get 20.
\frac{\sqrt{3}\left(4+2\sqrt{5}\right)}{-4}
Subtract 20 from 16 to get -4.
\frac{4\sqrt{3}+2\sqrt{3}\sqrt{5}}{-4}
Use the distributive property to multiply \sqrt{3} by 4+2\sqrt{5}.
\frac{4\sqrt{3}+2\sqrt{15}}{-4}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.