Solve for k
k=30\sqrt{3}+50\approx 101.961524227
Share
Copied to clipboard
\left(k+40\right)\sqrt{3}=3\left(k-20\right)
Variable k cannot be equal to -40 since division by zero is not defined. Multiply both sides of the equation by 3\left(k+40\right), the least common multiple of 3,k+40.
k\sqrt{3}+40\sqrt{3}=3\left(k-20\right)
Use the distributive property to multiply k+40 by \sqrt{3}.
k\sqrt{3}+40\sqrt{3}=3k-60
Use the distributive property to multiply 3 by k-20.
k\sqrt{3}+40\sqrt{3}-3k=-60
Subtract 3k from both sides.
k\sqrt{3}-3k=-60-40\sqrt{3}
Subtract 40\sqrt{3} from both sides.
\left(\sqrt{3}-3\right)k=-60-40\sqrt{3}
Combine all terms containing k.
\left(\sqrt{3}-3\right)k=-40\sqrt{3}-60
The equation is in standard form.
\frac{\left(\sqrt{3}-3\right)k}{\sqrt{3}-3}=\frac{-40\sqrt{3}-60}{\sqrt{3}-3}
Divide both sides by \sqrt{3}-3.
k=\frac{-40\sqrt{3}-60}{\sqrt{3}-3}
Dividing by \sqrt{3}-3 undoes the multiplication by \sqrt{3}-3.
k=30\sqrt{3}+50
Divide -60-40\sqrt{3} by \sqrt{3}-3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}