Evaluate
\frac{5\sqrt{3}+9}{2}\approx 8.830127019
Share
Copied to clipboard
\frac{\sqrt{3}\left(3\sqrt{3}+5\right)}{\left(3\sqrt{3}-5\right)\left(3\sqrt{3}+5\right)}
Rationalize the denominator of \frac{\sqrt{3}}{3\sqrt{3}-5} by multiplying numerator and denominator by 3\sqrt{3}+5.
\frac{\sqrt{3}\left(3\sqrt{3}+5\right)}{\left(3\sqrt{3}\right)^{2}-5^{2}}
Consider \left(3\sqrt{3}-5\right)\left(3\sqrt{3}+5\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{3}\left(3\sqrt{3}+5\right)}{3^{2}\left(\sqrt{3}\right)^{2}-5^{2}}
Expand \left(3\sqrt{3}\right)^{2}.
\frac{\sqrt{3}\left(3\sqrt{3}+5\right)}{9\left(\sqrt{3}\right)^{2}-5^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{\sqrt{3}\left(3\sqrt{3}+5\right)}{9\times 3-5^{2}}
The square of \sqrt{3} is 3.
\frac{\sqrt{3}\left(3\sqrt{3}+5\right)}{27-5^{2}}
Multiply 9 and 3 to get 27.
\frac{\sqrt{3}\left(3\sqrt{3}+5\right)}{27-25}
Calculate 5 to the power of 2 and get 25.
\frac{\sqrt{3}\left(3\sqrt{3}+5\right)}{2}
Subtract 25 from 27 to get 2.
\frac{3\left(\sqrt{3}\right)^{2}+5\sqrt{3}}{2}
Use the distributive property to multiply \sqrt{3} by 3\sqrt{3}+5.
\frac{3\times 3+5\sqrt{3}}{2}
The square of \sqrt{3} is 3.
\frac{9+5\sqrt{3}}{2}
Multiply 3 and 3 to get 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}