Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{3}\left(3\sqrt{3}+5\right)}{\left(3\sqrt{3}-5\right)\left(3\sqrt{3}+5\right)}
Rationalize the denominator of \frac{\sqrt{3}}{3\sqrt{3}-5} by multiplying numerator and denominator by 3\sqrt{3}+5.
\frac{\sqrt{3}\left(3\sqrt{3}+5\right)}{\left(3\sqrt{3}\right)^{2}-5^{2}}
Consider \left(3\sqrt{3}-5\right)\left(3\sqrt{3}+5\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{3}\left(3\sqrt{3}+5\right)}{3^{2}\left(\sqrt{3}\right)^{2}-5^{2}}
Expand \left(3\sqrt{3}\right)^{2}.
\frac{\sqrt{3}\left(3\sqrt{3}+5\right)}{9\left(\sqrt{3}\right)^{2}-5^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{\sqrt{3}\left(3\sqrt{3}+5\right)}{9\times 3-5^{2}}
The square of \sqrt{3} is 3.
\frac{\sqrt{3}\left(3\sqrt{3}+5\right)}{27-5^{2}}
Multiply 9 and 3 to get 27.
\frac{\sqrt{3}\left(3\sqrt{3}+5\right)}{27-25}
Calculate 5 to the power of 2 and get 25.
\frac{\sqrt{3}\left(3\sqrt{3}+5\right)}{2}
Subtract 25 from 27 to get 2.
\frac{3\left(\sqrt{3}\right)^{2}+5\sqrt{3}}{2}
Use the distributive property to multiply \sqrt{3} by 3\sqrt{3}+5.
\frac{3\times 3+5\sqrt{3}}{2}
The square of \sqrt{3} is 3.
\frac{9+5\sqrt{3}}{2}
Multiply 3 and 3 to get 9.