Evaluate
\frac{\sqrt{3}a\left(16-a\right)}{4}
Factor
\frac{\sqrt{3}a\left(16-a\right)}{4}
Share
Copied to clipboard
\frac{8}{2}\times \frac{\sqrt{3}}{2}a+\frac{\sqrt{3}}{2}a\left(8-a\right)\times \frac{1}{2}
Multiply 8 and \frac{1}{2} to get \frac{8}{2}.
4\times \frac{\sqrt{3}}{2}a+\frac{\sqrt{3}}{2}a\left(8-a\right)\times \frac{1}{2}
Divide 8 by 2 to get 4.
2\sqrt{3}a+\frac{\sqrt{3}}{2}a\left(8-a\right)\times \frac{1}{2}
Cancel out 2, the greatest common factor in 4 and 2.
2\sqrt{3}a+\frac{\sqrt{3}a}{2}\left(8-a\right)\times \frac{1}{2}
Express \frac{\sqrt{3}}{2}a as a single fraction.
2\sqrt{3}a+\frac{\sqrt{3}a\left(8-a\right)}{2}\times \frac{1}{2}
Express \frac{\sqrt{3}a}{2}\left(8-a\right) as a single fraction.
2\sqrt{3}a+\frac{\sqrt{3}a\left(8-a\right)}{2\times 2}
Multiply \frac{\sqrt{3}a\left(8-a\right)}{2} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{2\sqrt{3}a\times 2\times 2}{2\times 2}+\frac{\sqrt{3}a\left(8-a\right)}{2\times 2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2\sqrt{3}a times \frac{2\times 2}{2\times 2}.
\frac{2\sqrt{3}a\times 2\times 2+\sqrt{3}a\left(8-a\right)}{2\times 2}
Since \frac{2\sqrt{3}a\times 2\times 2}{2\times 2} and \frac{\sqrt{3}a\left(8-a\right)}{2\times 2} have the same denominator, add them by adding their numerators.
\frac{8\sqrt{3}a+8\sqrt{3}a-\sqrt{3}a^{2}}{2\times 2}
Do the multiplications in 2\sqrt{3}a\times 2\times 2+\sqrt{3}a\left(8-a\right).
\frac{16\sqrt{3}a-\sqrt{3}a^{2}}{2\times 2}
Combine like terms in 8\sqrt{3}a+8\sqrt{3}a-\sqrt{3}a^{2}.
\frac{16\sqrt{3}a-\sqrt{3}a^{2}}{4}
Expand 2\times 2.
a\left(\frac{1}{2}\times \frac{1}{2}\times 3^{\frac{1}{2}}\left(8-a\right)+\frac{1}{2}\times \frac{1}{2}\times 8\times 3^{\frac{1}{2}}\right)
Factor out common term a by using distributive property.
\frac{\sqrt{3}\left(8-a\right)+8\sqrt{3}}{4}
Consider \frac{1}{2}\times \frac{1}{2}\times 3^{\frac{1}{2}}\left(8-a\right)+\frac{1}{2}\times \frac{1}{2}\times 8\times 3^{\frac{1}{2}}. Factor out \frac{1}{4}.
\sqrt{3}\left(16-a\right)
Consider \sqrt{3}\left(8-a\right)+8\sqrt{3}. Factor out \sqrt{3}.
-a+16
Consider 8-a+8. Multiply and combine like terms.
\frac{\sqrt{3}\left(-a+16\right)}{4}
Rewrite the complete factored expression.
\frac{a\left(-a+16\right)\sqrt{3}}{4}
Rewrite the complete factored expression. Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}