Solve for x
x=\frac{4\sqrt{3}}{3}-0.17364817766693033\approx 2.135752899
Graph
Share
Copied to clipboard
\frac{\sqrt{3}}{2} {(0.17364817766693033 + x)} = 2
Evaluate trigonometric functions in the problem
\sqrt{3}\left(0.17364817766693033+x\right)=4
Multiply both sides of the equation by 2.
0.17364817766693033\sqrt{3}+\sqrt{3}x=4
Use the distributive property to multiply \sqrt{3} by 0.17364817766693033+x.
\sqrt{3}x=4-0.17364817766693033\sqrt{3}
Subtract 0.17364817766693033\sqrt{3} from both sides.
\sqrt{3}x=-\frac{17364817766693033\sqrt{3}}{100000000000000000}+4
The equation is in standard form.
\frac{\sqrt{3}x}{\sqrt{3}}=\frac{-\frac{17364817766693033\sqrt{3}}{100000000000000000}+4}{\sqrt{3}}
Divide both sides by \sqrt{3}.
x=\frac{-\frac{17364817766693033\sqrt{3}}{100000000000000000}+4}{\sqrt{3}}
Dividing by \sqrt{3} undoes the multiplication by \sqrt{3}.
x=\frac{4\sqrt{3}}{3}-\frac{17364817766693033}{100000000000000000}
Divide 4-\frac{17364817766693033\sqrt{3}}{100000000000000000} by \sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}