Skip to main content
Solve for y
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\sqrt{3}\left(2\sqrt{3}+3\right)}{\left(2\sqrt{3}-3\right)\left(2\sqrt{3}+3\right)}=x+y\sqrt{3}
Rationalize the denominator of \frac{\sqrt{3}}{2\sqrt{3}-3} by multiplying numerator and denominator by 2\sqrt{3}+3.
\frac{\sqrt{3}\left(2\sqrt{3}+3\right)}{\left(2\sqrt{3}\right)^{2}-3^{2}}=x+y\sqrt{3}
Consider \left(2\sqrt{3}-3\right)\left(2\sqrt{3}+3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{3}\left(2\sqrt{3}+3\right)}{2^{2}\left(\sqrt{3}\right)^{2}-3^{2}}=x+y\sqrt{3}
Expand \left(2\sqrt{3}\right)^{2}.
\frac{\sqrt{3}\left(2\sqrt{3}+3\right)}{4\left(\sqrt{3}\right)^{2}-3^{2}}=x+y\sqrt{3}
Calculate 2 to the power of 2 and get 4.
\frac{\sqrt{3}\left(2\sqrt{3}+3\right)}{4\times 3-3^{2}}=x+y\sqrt{3}
The square of \sqrt{3} is 3.
\frac{\sqrt{3}\left(2\sqrt{3}+3\right)}{12-3^{2}}=x+y\sqrt{3}
Multiply 4 and 3 to get 12.
\frac{\sqrt{3}\left(2\sqrt{3}+3\right)}{12-9}=x+y\sqrt{3}
Calculate 3 to the power of 2 and get 9.
\frac{\sqrt{3}\left(2\sqrt{3}+3\right)}{3}=x+y\sqrt{3}
Subtract 9 from 12 to get 3.
\frac{2\left(\sqrt{3}\right)^{2}+3\sqrt{3}}{3}=x+y\sqrt{3}
Use the distributive property to multiply \sqrt{3} by 2\sqrt{3}+3.
\frac{2\times 3+3\sqrt{3}}{3}=x+y\sqrt{3}
The square of \sqrt{3} is 3.
\frac{6+3\sqrt{3}}{3}=x+y\sqrt{3}
Multiply 2 and 3 to get 6.
2+\sqrt{3}=x+y\sqrt{3}
Divide each term of 6+3\sqrt{3} by 3 to get 2+\sqrt{3}.
x+y\sqrt{3}=2+\sqrt{3}
Swap sides so that all variable terms are on the left hand side.
y\sqrt{3}=2+\sqrt{3}-x
Subtract x from both sides.
\sqrt{3}y=-x+\sqrt{3}+2
The equation is in standard form.
\frac{\sqrt{3}y}{\sqrt{3}}=\frac{-x+\sqrt{3}+2}{\sqrt{3}}
Divide both sides by \sqrt{3}.
y=\frac{-x+\sqrt{3}+2}{\sqrt{3}}
Dividing by \sqrt{3} undoes the multiplication by \sqrt{3}.
y=\frac{\sqrt{3}\left(-x+\sqrt{3}+2\right)}{3}
Divide \sqrt{3}+2-x by \sqrt{3}.