Solve for y
y=-\frac{\sqrt{3}\left(x-\sqrt{3}-2\right)}{3}
Solve for x
x=-\sqrt{3}y+\sqrt{3}+2
Graph
Share
Copied to clipboard
\frac{\sqrt{3}\left(2\sqrt{3}+3\right)}{\left(2\sqrt{3}-3\right)\left(2\sqrt{3}+3\right)}=x+y\sqrt{3}
Rationalize the denominator of \frac{\sqrt{3}}{2\sqrt{3}-3} by multiplying numerator and denominator by 2\sqrt{3}+3.
\frac{\sqrt{3}\left(2\sqrt{3}+3\right)}{\left(2\sqrt{3}\right)^{2}-3^{2}}=x+y\sqrt{3}
Consider \left(2\sqrt{3}-3\right)\left(2\sqrt{3}+3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{3}\left(2\sqrt{3}+3\right)}{2^{2}\left(\sqrt{3}\right)^{2}-3^{2}}=x+y\sqrt{3}
Expand \left(2\sqrt{3}\right)^{2}.
\frac{\sqrt{3}\left(2\sqrt{3}+3\right)}{4\left(\sqrt{3}\right)^{2}-3^{2}}=x+y\sqrt{3}
Calculate 2 to the power of 2 and get 4.
\frac{\sqrt{3}\left(2\sqrt{3}+3\right)}{4\times 3-3^{2}}=x+y\sqrt{3}
The square of \sqrt{3} is 3.
\frac{\sqrt{3}\left(2\sqrt{3}+3\right)}{12-3^{2}}=x+y\sqrt{3}
Multiply 4 and 3 to get 12.
\frac{\sqrt{3}\left(2\sqrt{3}+3\right)}{12-9}=x+y\sqrt{3}
Calculate 3 to the power of 2 and get 9.
\frac{\sqrt{3}\left(2\sqrt{3}+3\right)}{3}=x+y\sqrt{3}
Subtract 9 from 12 to get 3.
\frac{2\left(\sqrt{3}\right)^{2}+3\sqrt{3}}{3}=x+y\sqrt{3}
Use the distributive property to multiply \sqrt{3} by 2\sqrt{3}+3.
\frac{2\times 3+3\sqrt{3}}{3}=x+y\sqrt{3}
The square of \sqrt{3} is 3.
\frac{6+3\sqrt{3}}{3}=x+y\sqrt{3}
Multiply 2 and 3 to get 6.
2+\sqrt{3}=x+y\sqrt{3}
Divide each term of 6+3\sqrt{3} by 3 to get 2+\sqrt{3}.
x+y\sqrt{3}=2+\sqrt{3}
Swap sides so that all variable terms are on the left hand side.
y\sqrt{3}=2+\sqrt{3}-x
Subtract x from both sides.
\sqrt{3}y=-x+\sqrt{3}+2
The equation is in standard form.
\frac{\sqrt{3}y}{\sqrt{3}}=\frac{-x+\sqrt{3}+2}{\sqrt{3}}
Divide both sides by \sqrt{3}.
y=\frac{-x+\sqrt{3}+2}{\sqrt{3}}
Dividing by \sqrt{3} undoes the multiplication by \sqrt{3}.
y=\frac{\sqrt{3}\left(-x+\sqrt{3}+2\right)}{3}
Divide \sqrt{3}+2-x by \sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}