Evaluate
\frac{\sqrt{10}}{5}\approx 0.632455532
Share
Copied to clipboard
\frac{\frac{\sqrt{3}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\sqrt{\frac{14}{10}}}{\sqrt{\frac{21}{4}}}
Rationalize the denominator of \frac{\sqrt{3}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\frac{\sqrt{3}\sqrt{2}}{2}\sqrt{\frac{14}{10}}}{\sqrt{\frac{21}{4}}}
The square of \sqrt{2} is 2.
\frac{\frac{\sqrt{6}}{2}\sqrt{\frac{14}{10}}}{\sqrt{\frac{21}{4}}}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\frac{\frac{\sqrt{6}}{2}\sqrt{\frac{7}{5}}}{\sqrt{\frac{21}{4}}}
Reduce the fraction \frac{14}{10} to lowest terms by extracting and canceling out 2.
\frac{\frac{\sqrt{6}}{2}\times \frac{\sqrt{7}}{\sqrt{5}}}{\sqrt{\frac{21}{4}}}
Rewrite the square root of the division \sqrt{\frac{7}{5}} as the division of square roots \frac{\sqrt{7}}{\sqrt{5}}.
\frac{\frac{\sqrt{6}}{2}\times \frac{\sqrt{7}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}}{\sqrt{\frac{21}{4}}}
Rationalize the denominator of \frac{\sqrt{7}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{\frac{\sqrt{6}}{2}\times \frac{\sqrt{7}\sqrt{5}}{5}}{\sqrt{\frac{21}{4}}}
The square of \sqrt{5} is 5.
\frac{\frac{\sqrt{6}}{2}\times \frac{\sqrt{35}}{5}}{\sqrt{\frac{21}{4}}}
To multiply \sqrt{7} and \sqrt{5}, multiply the numbers under the square root.
\frac{\frac{\sqrt{6}\sqrt{35}}{2\times 5}}{\sqrt{\frac{21}{4}}}
Multiply \frac{\sqrt{6}}{2} times \frac{\sqrt{35}}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{\sqrt{6}\sqrt{35}}{2\times 5}}{\frac{\sqrt{21}}{\sqrt{4}}}
Rewrite the square root of the division \sqrt{\frac{21}{4}} as the division of square roots \frac{\sqrt{21}}{\sqrt{4}}.
\frac{\frac{\sqrt{6}\sqrt{35}}{2\times 5}}{\frac{\sqrt{21}}{2}}
Calculate the square root of 4 and get 2.
\frac{\sqrt{6}\sqrt{35}\times 2}{2\times 5\sqrt{21}}
Divide \frac{\sqrt{6}\sqrt{35}}{2\times 5} by \frac{\sqrt{21}}{2} by multiplying \frac{\sqrt{6}\sqrt{35}}{2\times 5} by the reciprocal of \frac{\sqrt{21}}{2}.
\frac{\sqrt{6}\sqrt{35}}{5\sqrt{21}}
Cancel out 2 in both numerator and denominator.
\frac{\sqrt{6}\sqrt{35}\sqrt{21}}{5\left(\sqrt{21}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{6}\sqrt{35}}{5\sqrt{21}} by multiplying numerator and denominator by \sqrt{21}.
\frac{\sqrt{6}\sqrt{35}\sqrt{21}}{5\times 21}
The square of \sqrt{21} is 21.
\frac{\sqrt{210}\sqrt{21}}{5\times 21}
To multiply \sqrt{6} and \sqrt{35}, multiply the numbers under the square root.
\frac{\sqrt{21}\sqrt{10}\sqrt{21}}{5\times 21}
Factor 210=21\times 10. Rewrite the square root of the product \sqrt{21\times 10} as the product of square roots \sqrt{21}\sqrt{10}.
\frac{21\sqrt{10}}{5\times 21}
Multiply \sqrt{21} and \sqrt{21} to get 21.
\frac{21\sqrt{10}}{105}
Multiply 5 and 21 to get 105.
\frac{1}{5}\sqrt{10}
Divide 21\sqrt{10} by 105 to get \frac{1}{5}\sqrt{10}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}