Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{3}\left(\sqrt{50625}-\sqrt{6}\right)}{\sqrt{2}}
Calculate 15 to the power of 4 and get 50625.
\frac{\sqrt{3}\left(225-\sqrt{6}\right)}{\sqrt{2}}
Calculate the square root of 50625 and get 225.
\frac{\sqrt{3}\left(225-\sqrt{6}\right)\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{3}\left(225-\sqrt{6}\right)}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\sqrt{3}\left(225-\sqrt{6}\right)\sqrt{2}}{2}
The square of \sqrt{2} is 2.
\frac{\sqrt{6}\left(225-\sqrt{6}\right)}{2}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\frac{225\sqrt{6}-\left(\sqrt{6}\right)^{2}}{2}
Use the distributive property to multiply \sqrt{6} by 225-\sqrt{6}.
\frac{225\sqrt{6}-6}{2}
The square of \sqrt{6} is 6.