Solve for x
x=0
Solve for x (complex solution)
x=\frac{2\pi n_{1}i}{\ln(3)}
n_{1}\in \mathrm{Z}
Graph
Share
Copied to clipboard
\sqrt{3}\sqrt[4]{9}=3\times 3^{x}
Multiply both sides of the equation by 3.
\sqrt[4]{9}=\sqrt[4]{3^{2}}=3^{\frac{2}{4}}=3^{\frac{1}{2}}=\sqrt{3}
Rewrite \sqrt[4]{9} as \sqrt[4]{3^{2}}. Convert from radical to exponential form and cancel out 2 in the exponent. Convert back to radical form.
\sqrt{3}\sqrt{3}=3\times 3^{x}
Insert the obtained value back in the expression.
3=3\times 3^{x}
Multiply \sqrt{3} and \sqrt{3} to get 3.
3\times 3^{x}=3
Swap sides so that all variable terms are on the left hand side.
3^{x}=\frac{3}{3}
Divide both sides by 3.
3^{x}=1
Divide 3 by 3 to get 1.
\log(3^{x})=\log(1)
Take the logarithm of both sides of the equation.
x\log(3)=\log(1)
The logarithm of a number raised to a power is the power times the logarithm of the number.
x=\frac{\log(1)}{\log(3)}
Divide both sides by \log(3).
x=\log_{3}\left(1\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}