Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\sqrt{3}+6\right)\left(3-\sqrt{2}\right)}{\left(3+\sqrt{2}\right)\left(3-\sqrt{2}\right)}
Rationalize the denominator of \frac{\sqrt{3}+6}{3+\sqrt{2}} by multiplying numerator and denominator by 3-\sqrt{2}.
\frac{\left(\sqrt{3}+6\right)\left(3-\sqrt{2}\right)}{3^{2}-\left(\sqrt{2}\right)^{2}}
Consider \left(3+\sqrt{2}\right)\left(3-\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{3}+6\right)\left(3-\sqrt{2}\right)}{9-2}
Square 3. Square \sqrt{2}.
\frac{\left(\sqrt{3}+6\right)\left(3-\sqrt{2}\right)}{7}
Subtract 2 from 9 to get 7.
\frac{3\sqrt{3}-\sqrt{3}\sqrt{2}+18-6\sqrt{2}}{7}
Apply the distributive property by multiplying each term of \sqrt{3}+6 by each term of 3-\sqrt{2}.
\frac{3\sqrt{3}-\sqrt{6}+18-6\sqrt{2}}{7}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.