Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\sqrt{3}+2\right)\left(1+\sqrt{3}\right)}{\left(1-\sqrt{3}\right)\left(1+\sqrt{3}\right)}
Rationalize the denominator of \frac{\sqrt{3}+2}{1-\sqrt{3}} by multiplying numerator and denominator by 1+\sqrt{3}.
\frac{\left(\sqrt{3}+2\right)\left(1+\sqrt{3}\right)}{1^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(1-\sqrt{3}\right)\left(1+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{3}+2\right)\left(1+\sqrt{3}\right)}{1-3}
Square 1. Square \sqrt{3}.
\frac{\left(\sqrt{3}+2\right)\left(1+\sqrt{3}\right)}{-2}
Subtract 3 from 1 to get -2.
\frac{\sqrt{3}+\left(\sqrt{3}\right)^{2}+2+2\sqrt{3}}{-2}
Apply the distributive property by multiplying each term of \sqrt{3}+2 by each term of 1+\sqrt{3}.
\frac{\sqrt{3}+3+2+2\sqrt{3}}{-2}
The square of \sqrt{3} is 3.
\frac{\sqrt{3}+5+2\sqrt{3}}{-2}
Add 3 and 2 to get 5.
\frac{3\sqrt{3}+5}{-2}
Combine \sqrt{3} and 2\sqrt{3} to get 3\sqrt{3}.
\frac{-3\sqrt{3}-5}{2}
Multiply both numerator and denominator by -1.