Solve for b
b=-\frac{\sqrt{6}\left(a-2\sqrt{6}-5\right)}{6}
Solve for a
a=-\sqrt{6}b+2\sqrt{6}+5
Share
Copied to clipboard
\frac{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}=a+b\sqrt{6}
Rationalize the denominator of \frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}} by multiplying numerator and denominator by \sqrt{3}+\sqrt{2}.
\frac{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}{\left(\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}=a+b\sqrt{6}
Consider \left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}{3-2}=a+b\sqrt{6}
Square \sqrt{3}. Square \sqrt{2}.
\frac{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}{1}=a+b\sqrt{6}
Subtract 2 from 3 to get 1.
\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)=a+b\sqrt{6}
Anything divided by one gives itself.
\left(\sqrt{3}+\sqrt{2}\right)^{2}=a+b\sqrt{6}
Multiply \sqrt{3}+\sqrt{2} and \sqrt{3}+\sqrt{2} to get \left(\sqrt{3}+\sqrt{2}\right)^{2}.
\left(\sqrt{3}\right)^{2}+2\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}=a+b\sqrt{6}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{3}+\sqrt{2}\right)^{2}.
3+2\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}=a+b\sqrt{6}
The square of \sqrt{3} is 3.
3+2\sqrt{6}+\left(\sqrt{2}\right)^{2}=a+b\sqrt{6}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
3+2\sqrt{6}+2=a+b\sqrt{6}
The square of \sqrt{2} is 2.
5+2\sqrt{6}=a+b\sqrt{6}
Add 3 and 2 to get 5.
a+b\sqrt{6}=5+2\sqrt{6}
Swap sides so that all variable terms are on the left hand side.
b\sqrt{6}=5+2\sqrt{6}-a
Subtract a from both sides.
\sqrt{6}b=-a+2\sqrt{6}+5
The equation is in standard form.
\frac{\sqrt{6}b}{\sqrt{6}}=\frac{-a+2\sqrt{6}+5}{\sqrt{6}}
Divide both sides by \sqrt{6}.
b=\frac{-a+2\sqrt{6}+5}{\sqrt{6}}
Dividing by \sqrt{6} undoes the multiplication by \sqrt{6}.
b=\frac{\sqrt{6}\left(-a+2\sqrt{6}+5\right)}{6}
Divide -a+2\sqrt{6}+5 by \sqrt{6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}