Evaluate
\frac{\sqrt{6}}{2}\approx 1.224744871
Share
Copied to clipboard
\frac{\sqrt{21}\sqrt{14}}{\left(\sqrt{14}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{21}}{\sqrt{14}} by multiplying numerator and denominator by \sqrt{14}.
\frac{\sqrt{21}\sqrt{14}}{14}
The square of \sqrt{14} is 14.
\frac{\sqrt{294}}{14}
To multiply \sqrt{21} and \sqrt{14}, multiply the numbers under the square root.
\frac{7\sqrt{6}}{14}
Factor 294=7^{2}\times 6. Rewrite the square root of the product \sqrt{7^{2}\times 6} as the product of square roots \sqrt{7^{2}}\sqrt{6}. Take the square root of 7^{2}.
\frac{1}{2}\sqrt{6}
Divide 7\sqrt{6} by 14 to get \frac{1}{2}\sqrt{6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}