Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{2}-\sqrt{5}}{\sqrt{2}+\sqrt{3}}\times 1
Divide \sqrt{2}-\sqrt{5} by \sqrt{2}-\sqrt{5} to get 1.
\frac{\left(\sqrt{2}-\sqrt{5}\right)\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}\times 1
Rationalize the denominator of \frac{\sqrt{2}-\sqrt{5}}{\sqrt{2}+\sqrt{3}} by multiplying numerator and denominator by \sqrt{2}-\sqrt{3}.
\frac{\left(\sqrt{2}-\sqrt{5}\right)\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}\right)^{2}-\left(\sqrt{3}\right)^{2}}\times 1
Consider \left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{2}-\sqrt{5}\right)\left(\sqrt{2}-\sqrt{3}\right)}{2-3}\times 1
Square \sqrt{2}. Square \sqrt{3}.
\frac{\left(\sqrt{2}-\sqrt{5}\right)\left(\sqrt{2}-\sqrt{3}\right)}{-1}\times 1
Subtract 3 from 2 to get -1.
\left(-\left(\sqrt{2}-\sqrt{5}\right)\left(\sqrt{2}-\sqrt{3}\right)\right)\times 1
Anything divided by -1 gives its opposite.
\left(-\left(\left(\sqrt{2}\right)^{2}-\sqrt{2}\sqrt{3}-\sqrt{5}\sqrt{2}+\sqrt{3}\sqrt{5}\right)\right)\times 1
Apply the distributive property by multiplying each term of \sqrt{2}-\sqrt{5} by each term of \sqrt{2}-\sqrt{3}.
\left(-\left(2-\sqrt{2}\sqrt{3}-\sqrt{5}\sqrt{2}+\sqrt{3}\sqrt{5}\right)\right)\times 1
The square of \sqrt{2} is 2.
\left(-\left(2-\sqrt{6}-\sqrt{5}\sqrt{2}+\sqrt{3}\sqrt{5}\right)\right)\times 1
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\left(-\left(2-\sqrt{6}-\sqrt{10}+\sqrt{3}\sqrt{5}\right)\right)\times 1
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
\left(-\left(2-\sqrt{6}-\sqrt{10}+\sqrt{15}\right)\right)\times 1
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.
\left(-2-\left(-\sqrt{6}\right)-\left(-\sqrt{10}\right)-\sqrt{15}\right)\times 1
To find the opposite of 2-\sqrt{6}-\sqrt{10}+\sqrt{15}, find the opposite of each term.
\left(-2+\sqrt{6}-\left(-\sqrt{10}\right)-\sqrt{15}\right)\times 1
The opposite of -\sqrt{6} is \sqrt{6}.
\left(-2+\sqrt{6}+\sqrt{10}-\sqrt{15}\right)\times 1
The opposite of -\sqrt{10} is \sqrt{10}.
-2+\sqrt{6}+\sqrt{10}-\sqrt{15}
Use the distributive property to multiply -2+\sqrt{6}+\sqrt{10}-\sqrt{15} by 1.