Evaluate
\sqrt{6}+\sqrt{10}-\sqrt{15}-2\approx -0.261215943
Factor
-\left(\sqrt{15}+2-\sqrt{6}-\sqrt{10}\right)
Share
Copied to clipboard
\frac{\sqrt{2}-\sqrt{5}}{\sqrt{2}+\sqrt{3}}\times 1
Divide \sqrt{2}-\sqrt{5} by \sqrt{2}-\sqrt{5} to get 1.
\frac{\left(\sqrt{2}-\sqrt{5}\right)\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}\times 1
Rationalize the denominator of \frac{\sqrt{2}-\sqrt{5}}{\sqrt{2}+\sqrt{3}} by multiplying numerator and denominator by \sqrt{2}-\sqrt{3}.
\frac{\left(\sqrt{2}-\sqrt{5}\right)\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}\right)^{2}-\left(\sqrt{3}\right)^{2}}\times 1
Consider \left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{2}-\sqrt{5}\right)\left(\sqrt{2}-\sqrt{3}\right)}{2-3}\times 1
Square \sqrt{2}. Square \sqrt{3}.
\frac{\left(\sqrt{2}-\sqrt{5}\right)\left(\sqrt{2}-\sqrt{3}\right)}{-1}\times 1
Subtract 3 from 2 to get -1.
\left(-\left(\sqrt{2}-\sqrt{5}\right)\left(\sqrt{2}-\sqrt{3}\right)\right)\times 1
Anything divided by -1 gives its opposite.
\left(-\left(\left(\sqrt{2}\right)^{2}-\sqrt{2}\sqrt{3}-\sqrt{5}\sqrt{2}+\sqrt{3}\sqrt{5}\right)\right)\times 1
Apply the distributive property by multiplying each term of \sqrt{2}-\sqrt{5} by each term of \sqrt{2}-\sqrt{3}.
\left(-\left(2-\sqrt{2}\sqrt{3}-\sqrt{5}\sqrt{2}+\sqrt{3}\sqrt{5}\right)\right)\times 1
The square of \sqrt{2} is 2.
\left(-\left(2-\sqrt{6}-\sqrt{5}\sqrt{2}+\sqrt{3}\sqrt{5}\right)\right)\times 1
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\left(-\left(2-\sqrt{6}-\sqrt{10}+\sqrt{3}\sqrt{5}\right)\right)\times 1
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
\left(-\left(2-\sqrt{6}-\sqrt{10}+\sqrt{15}\right)\right)\times 1
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.
\left(-2-\left(-\sqrt{6}\right)-\left(-\sqrt{10}\right)-\sqrt{15}\right)\times 1
To find the opposite of 2-\sqrt{6}-\sqrt{10}+\sqrt{15}, find the opposite of each term.
\left(-2+\sqrt{6}-\left(-\sqrt{10}\right)-\sqrt{15}\right)\times 1
The opposite of -\sqrt{6} is \sqrt{6}.
\left(-2+\sqrt{6}+\sqrt{10}-\sqrt{15}\right)\times 1
The opposite of -\sqrt{10} is \sqrt{10}.
-2+\sqrt{6}+\sqrt{10}-\sqrt{15}
Use the distributive property to multiply -2+\sqrt{6}+\sqrt{10}-\sqrt{15} by 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}