Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{2}\left(4-\sqrt{3}\right)}{\left(4+\sqrt{3}\right)\left(4-\sqrt{3}\right)}
Rationalize the denominator of \frac{\sqrt{2}}{4+\sqrt{3}} by multiplying numerator and denominator by 4-\sqrt{3}.
\frac{\sqrt{2}\left(4-\sqrt{3}\right)}{4^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(4+\sqrt{3}\right)\left(4-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{2}\left(4-\sqrt{3}\right)}{16-3}
Square 4. Square \sqrt{3}.
\frac{\sqrt{2}\left(4-\sqrt{3}\right)}{13}
Subtract 3 from 16 to get 13.
\frac{4\sqrt{2}-\sqrt{2}\sqrt{3}}{13}
Use the distributive property to multiply \sqrt{2} by 4-\sqrt{3}.
\frac{4\sqrt{2}-\sqrt{6}}{13}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.