Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{2}\left(\sqrt{3}+\sqrt{7}\right)}{\left(\sqrt{3}-\sqrt{7}\right)\left(\sqrt{3}+\sqrt{7}\right)}
Rationalize the denominator of \frac{\sqrt{2}}{\sqrt{3}-\sqrt{7}} by multiplying numerator and denominator by \sqrt{3}+\sqrt{7}.
\frac{\sqrt{2}\left(\sqrt{3}+\sqrt{7}\right)}{\left(\sqrt{3}\right)^{2}-\left(\sqrt{7}\right)^{2}}
Consider \left(\sqrt{3}-\sqrt{7}\right)\left(\sqrt{3}+\sqrt{7}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{2}\left(\sqrt{3}+\sqrt{7}\right)}{3-7}
Square \sqrt{3}. Square \sqrt{7}.
\frac{\sqrt{2}\left(\sqrt{3}+\sqrt{7}\right)}{-4}
Subtract 7 from 3 to get -4.
\frac{\sqrt{2}\sqrt{3}+\sqrt{2}\sqrt{7}}{-4}
Use the distributive property to multiply \sqrt{2} by \sqrt{3}+\sqrt{7}.
\frac{\sqrt{6}+\sqrt{2}\sqrt{7}}{-4}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\frac{\sqrt{6}+\sqrt{14}}{-4}
To multiply \sqrt{2} and \sqrt{7}, multiply the numbers under the square root.
\frac{-\sqrt{6}-\sqrt{14}}{4}
Multiply both numerator and denominator by -1.