Evaluate
\sqrt{2}\left(\frac{1}{4}+\frac{1}{4}i\right)+\sqrt{6}\left(\frac{1}{4}-\frac{1}{4}i\right)\approx 0.965925826-0.258819045i
Real Part
\frac{\sqrt{2} {(\sqrt{3} + 1)}}{4} = 0.9659258262890683
Share
Copied to clipboard
\frac{\left(1+i\right)\sqrt{2}}{1+i\sqrt{3}}
Combine \sqrt{2} and i\sqrt{2} to get \left(1+i\right)\sqrt{2}.
\frac{\left(1+i\right)\sqrt{2}\left(1-i\sqrt{3}\right)}{\left(1+i\sqrt{3}\right)\left(1-i\sqrt{3}\right)}
Rationalize the denominator of \frac{\left(1+i\right)\sqrt{2}}{1+i\sqrt{3}} by multiplying numerator and denominator by 1-i\sqrt{3}.
\frac{\left(1+i\right)\sqrt{2}\left(1-i\sqrt{3}\right)}{1^{2}-\left(i\sqrt{3}\right)^{2}}
Consider \left(1+i\sqrt{3}\right)\left(1-i\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(1+i\right)\sqrt{2}\left(1-i\sqrt{3}\right)}{1-\left(i\sqrt{3}\right)^{2}}
Calculate 1 to the power of 2 and get 1.
\frac{\left(1+i\right)\sqrt{2}\left(1-i\sqrt{3}\right)}{1-i^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(i\sqrt{3}\right)^{2}.
\frac{\left(1+i\right)\sqrt{2}\left(1-i\sqrt{3}\right)}{1-\left(-\left(\sqrt{3}\right)^{2}\right)}
Calculate i to the power of 2 and get -1.
\frac{\left(1+i\right)\sqrt{2}\left(1-i\sqrt{3}\right)}{1-\left(-3\right)}
The square of \sqrt{3} is 3.
\frac{\left(1+i\right)\sqrt{2}\left(1-i\sqrt{3}\right)}{1+3}
Multiply -1 and -3 to get 3.
\frac{\left(1+i\right)\sqrt{2}\left(1-i\sqrt{3}\right)}{4}
Add 1 and 3 to get 4.
\left(\frac{1}{4}+\frac{1}{4}i\right)\sqrt{2}\left(1-i\sqrt{3}\right)
Divide \left(1+i\right)\sqrt{2}\left(1-i\sqrt{3}\right) by 4 to get \left(\frac{1}{4}+\frac{1}{4}i\right)\sqrt{2}\left(1-i\sqrt{3}\right).
\left(\frac{1}{4}+\frac{1}{4}i\right)\sqrt{2}+\left(\frac{1}{4}-\frac{1}{4}i\right)\sqrt{3}\sqrt{2}
Use the distributive property to multiply \left(\frac{1}{4}+\frac{1}{4}i\right)\sqrt{2} by 1-i\sqrt{3}.
\left(\frac{1}{4}+\frac{1}{4}i\right)\sqrt{2}+\left(\frac{1}{4}-\frac{1}{4}i\right)\sqrt{6}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}