Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(1+i\right)\sqrt{2}}{1+i\sqrt{3}}
Combine \sqrt{2} and i\sqrt{2} to get \left(1+i\right)\sqrt{2}.
\frac{\left(1+i\right)\sqrt{2}\left(1-i\sqrt{3}\right)}{\left(1+i\sqrt{3}\right)\left(1-i\sqrt{3}\right)}
Rationalize the denominator of \frac{\left(1+i\right)\sqrt{2}}{1+i\sqrt{3}} by multiplying numerator and denominator by 1-i\sqrt{3}.
\frac{\left(1+i\right)\sqrt{2}\left(1-i\sqrt{3}\right)}{1^{2}-\left(i\sqrt{3}\right)^{2}}
Consider \left(1+i\sqrt{3}\right)\left(1-i\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(1+i\right)\sqrt{2}\left(1-i\sqrt{3}\right)}{1-\left(i\sqrt{3}\right)^{2}}
Calculate 1 to the power of 2 and get 1.
\frac{\left(1+i\right)\sqrt{2}\left(1-i\sqrt{3}\right)}{1-i^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(i\sqrt{3}\right)^{2}.
\frac{\left(1+i\right)\sqrt{2}\left(1-i\sqrt{3}\right)}{1-\left(-\left(\sqrt{3}\right)^{2}\right)}
Calculate i to the power of 2 and get -1.
\frac{\left(1+i\right)\sqrt{2}\left(1-i\sqrt{3}\right)}{1-\left(-3\right)}
The square of \sqrt{3} is 3.
\frac{\left(1+i\right)\sqrt{2}\left(1-i\sqrt{3}\right)}{1+3}
Multiply -1 and -3 to get 3.
\frac{\left(1+i\right)\sqrt{2}\left(1-i\sqrt{3}\right)}{4}
Add 1 and 3 to get 4.
\left(\frac{1}{4}+\frac{1}{4}i\right)\sqrt{2}\left(1-i\sqrt{3}\right)
Divide \left(1+i\right)\sqrt{2}\left(1-i\sqrt{3}\right) by 4 to get \left(\frac{1}{4}+\frac{1}{4}i\right)\sqrt{2}\left(1-i\sqrt{3}\right).
\left(\frac{1}{4}+\frac{1}{4}i\right)\sqrt{2}+\left(\frac{1}{4}-\frac{1}{4}i\right)\sqrt{3}\sqrt{2}
Use the distributive property to multiply \left(\frac{1}{4}+\frac{1}{4}i\right)\sqrt{2} by 1-i\sqrt{3}.
\left(\frac{1}{4}+\frac{1}{4}i\right)\sqrt{2}+\left(\frac{1}{4}-\frac{1}{4}i\right)\sqrt{6}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.