Solve for b
b=\frac{\sqrt{6}}{3}+\frac{2\sqrt[6]{3}}{573}+\frac{4\sqrt[3]{3}}{573}+\frac{8\sqrt{3}}{573}+\frac{16\times 3^{\frac{2}{3}}}{573}+\frac{32\times 3^{\frac{5}{6}}}{573}+\frac{64}{191}\approx 1.387606886
Share
Copied to clipboard
\frac{2\sqrt{2}}{\sqrt[3]{3}-2\sqrt{3}}=2-b\sqrt{6}
Combine \sqrt{2} and \sqrt{2} to get 2\sqrt{2}.
\frac{2\sqrt{2}\left(\sqrt[3]{3}+2\sqrt{3}\right)}{\left(\sqrt[3]{3}-2\sqrt{3}\right)\left(\sqrt[3]{3}+2\sqrt{3}\right)}=2-b\sqrt{6}
Rationalize the denominator of \frac{2\sqrt{2}}{\sqrt[3]{3}-2\sqrt{3}} by multiplying numerator and denominator by \sqrt[3]{3}+2\sqrt{3}.
\frac{2\sqrt{2}\left(\sqrt[3]{3}+2\sqrt{3}\right)}{\left(\sqrt[3]{3}\right)^{2}-\left(-2\sqrt{3}\right)^{2}}=2-b\sqrt{6}
Consider \left(\sqrt[3]{3}-2\sqrt{3}\right)\left(\sqrt[3]{3}+2\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\sqrt{2}\left(\sqrt[3]{3}+2\sqrt{3}\right)}{\left(\sqrt[3]{3}\right)^{2}-\left(-2\right)^{2}\left(\sqrt{3}\right)^{2}}=2-b\sqrt{6}
Expand \left(-2\sqrt{3}\right)^{2}.
\frac{2\sqrt{2}\left(\sqrt[3]{3}+2\sqrt{3}\right)}{\left(\sqrt[3]{3}\right)^{2}-4\left(\sqrt{3}\right)^{2}}=2-b\sqrt{6}
Calculate -2 to the power of 2 and get 4.
\frac{2\sqrt{2}\left(\sqrt[3]{3}+2\sqrt{3}\right)}{\left(\sqrt[3]{3}\right)^{2}-4\times 3}=2-b\sqrt{6}
The square of \sqrt{3} is 3.
\frac{2\sqrt{2}\left(\sqrt[3]{3}+2\sqrt{3}\right)}{\left(\sqrt[3]{3}\right)^{2}-12}=2-b\sqrt{6}
Multiply 4 and 3 to get 12.
\frac{2\sqrt{2}\sqrt[3]{3}+4\sqrt{3}\sqrt{2}}{\left(\sqrt[3]{3}\right)^{2}-12}=2-b\sqrt{6}
Use the distributive property to multiply 2\sqrt{2} by \sqrt[3]{3}+2\sqrt{3}.
\frac{2\sqrt{2}\sqrt[3]{3}+4\sqrt{6}}{\left(\sqrt[3]{3}\right)^{2}-12}=2-b\sqrt{6}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
2-b\sqrt{6}=\frac{2\sqrt{2}\sqrt[3]{3}+4\sqrt{6}}{\left(\sqrt[3]{3}\right)^{2}-12}
Swap sides so that all variable terms are on the left hand side.
-b\sqrt{6}=\frac{2\sqrt{2}\sqrt[3]{3}+4\sqrt{6}}{\left(\sqrt[3]{3}\right)^{2}-12}-2
Subtract 2 from both sides.
\left(-\sqrt{6}\right)b=\frac{2\sqrt{2}\sqrt[3]{3}+4\sqrt{6}}{\left(\sqrt[3]{3}\right)^{2}-12}-2
The equation is in standard form.
\frac{\left(-\sqrt{6}\right)b}{-\sqrt{6}}=\frac{2\left(\sqrt{2}\sqrt[3]{3}+2\sqrt{6}+12-3^{\frac{2}{3}}\right)}{\left(3^{\frac{2}{3}}-12\right)\left(-\sqrt{6}\right)}
Divide both sides by -\sqrt{6}.
b=\frac{2\left(\sqrt{2}\sqrt[3]{3}+2\sqrt{6}+12-3^{\frac{2}{3}}\right)}{\left(3^{\frac{2}{3}}-12\right)\left(-\sqrt{6}\right)}
Dividing by -\sqrt{6} undoes the multiplication by -\sqrt{6}.
b=-\frac{\sqrt{6}\left(\sqrt{2}\sqrt[3]{3}+2\sqrt{6}+12-3^{\frac{2}{3}}\right)}{3\left(3^{\frac{2}{3}}-12\right)}
Divide \frac{2\left(\sqrt{2}\sqrt[3]{3}+2\sqrt{6}-3^{\frac{2}{3}}+12\right)}{3^{\frac{2}{3}}-12} by -\sqrt{6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}