Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{4+4^{2}}+\sqrt{13}}{\sqrt{20}-\sqrt{13}}
Calculate 2 to the power of 2 and get 4.
\frac{\sqrt{4+16}+\sqrt{13}}{\sqrt{20}-\sqrt{13}}
Calculate 4 to the power of 2 and get 16.
\frac{\sqrt{20}+\sqrt{13}}{\sqrt{20}-\sqrt{13}}
Add 4 and 16 to get 20.
\frac{2\sqrt{5}+\sqrt{13}}{\sqrt{20}-\sqrt{13}}
Factor 20=2^{2}\times 5. Rewrite the square root of the product \sqrt{2^{2}\times 5} as the product of square roots \sqrt{2^{2}}\sqrt{5}. Take the square root of 2^{2}.
\frac{2\sqrt{5}+\sqrt{13}}{2\sqrt{5}-\sqrt{13}}
Factor 20=2^{2}\times 5. Rewrite the square root of the product \sqrt{2^{2}\times 5} as the product of square roots \sqrt{2^{2}}\sqrt{5}. Take the square root of 2^{2}.
\frac{\left(2\sqrt{5}+\sqrt{13}\right)\left(2\sqrt{5}+\sqrt{13}\right)}{\left(2\sqrt{5}-\sqrt{13}\right)\left(2\sqrt{5}+\sqrt{13}\right)}
Rationalize the denominator of \frac{2\sqrt{5}+\sqrt{13}}{2\sqrt{5}-\sqrt{13}} by multiplying numerator and denominator by 2\sqrt{5}+\sqrt{13}.
\frac{\left(2\sqrt{5}+\sqrt{13}\right)\left(2\sqrt{5}+\sqrt{13}\right)}{\left(2\sqrt{5}\right)^{2}-\left(\sqrt{13}\right)^{2}}
Consider \left(2\sqrt{5}-\sqrt{13}\right)\left(2\sqrt{5}+\sqrt{13}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2\sqrt{5}+\sqrt{13}\right)^{2}}{\left(2\sqrt{5}\right)^{2}-\left(\sqrt{13}\right)^{2}}
Multiply 2\sqrt{5}+\sqrt{13} and 2\sqrt{5}+\sqrt{13} to get \left(2\sqrt{5}+\sqrt{13}\right)^{2}.
\frac{4\left(\sqrt{5}\right)^{2}+4\sqrt{5}\sqrt{13}+\left(\sqrt{13}\right)^{2}}{\left(2\sqrt{5}\right)^{2}-\left(\sqrt{13}\right)^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2\sqrt{5}+\sqrt{13}\right)^{2}.
\frac{4\times 5+4\sqrt{5}\sqrt{13}+\left(\sqrt{13}\right)^{2}}{\left(2\sqrt{5}\right)^{2}-\left(\sqrt{13}\right)^{2}}
The square of \sqrt{5} is 5.
\frac{20+4\sqrt{5}\sqrt{13}+\left(\sqrt{13}\right)^{2}}{\left(2\sqrt{5}\right)^{2}-\left(\sqrt{13}\right)^{2}}
Multiply 4 and 5 to get 20.
\frac{20+4\sqrt{65}+\left(\sqrt{13}\right)^{2}}{\left(2\sqrt{5}\right)^{2}-\left(\sqrt{13}\right)^{2}}
To multiply \sqrt{5} and \sqrt{13}, multiply the numbers under the square root.
\frac{20+4\sqrt{65}+13}{\left(2\sqrt{5}\right)^{2}-\left(\sqrt{13}\right)^{2}}
The square of \sqrt{13} is 13.
\frac{33+4\sqrt{65}}{\left(2\sqrt{5}\right)^{2}-\left(\sqrt{13}\right)^{2}}
Add 20 and 13 to get 33.
\frac{33+4\sqrt{65}}{2^{2}\left(\sqrt{5}\right)^{2}-\left(\sqrt{13}\right)^{2}}
Expand \left(2\sqrt{5}\right)^{2}.
\frac{33+4\sqrt{65}}{4\left(\sqrt{5}\right)^{2}-\left(\sqrt{13}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{33+4\sqrt{65}}{4\times 5-\left(\sqrt{13}\right)^{2}}
The square of \sqrt{5} is 5.
\frac{33+4\sqrt{65}}{20-\left(\sqrt{13}\right)^{2}}
Multiply 4 and 5 to get 20.
\frac{33+4\sqrt{65}}{20-13}
The square of \sqrt{13} is 13.
\frac{33+4\sqrt{65}}{7}
Subtract 13 from 20 to get 7.