Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\sqrt{6}-\left(\sqrt{3}+\sqrt{2}\right)^{2}
Rewrite the division of square roots \frac{\sqrt{18}}{\sqrt{3}} as the square root of the division \sqrt{\frac{18}{3}} and perform the division.
\sqrt{6}-\left(\left(\sqrt{3}\right)^{2}+2\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{3}+\sqrt{2}\right)^{2}.
\sqrt{6}-\left(3+2\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)
The square of \sqrt{3} is 3.
\sqrt{6}-\left(3+2\sqrt{6}+\left(\sqrt{2}\right)^{2}\right)
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\sqrt{6}-\left(3+2\sqrt{6}+2\right)
The square of \sqrt{2} is 2.
\sqrt{6}-\left(5+2\sqrt{6}\right)
Add 3 and 2 to get 5.
\sqrt{6}-5-2\sqrt{6}
To find the opposite of 5+2\sqrt{6}, find the opposite of each term.
-\sqrt{6}-5
Combine \sqrt{6} and -2\sqrt{6} to get -\sqrt{6}.