Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{15}+2\sqrt{3}}{3}\left(\sqrt{5}-2\right)
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\frac{\left(\sqrt{15}+2\sqrt{3}\right)\left(\sqrt{5}-2\right)}{3}
Express \frac{\sqrt{15}+2\sqrt{3}}{3}\left(\sqrt{5}-2\right) as a single fraction.
\frac{\sqrt{15}\sqrt{5}-2\sqrt{15}+2\sqrt{3}\sqrt{5}-4\sqrt{3}}{3}
Apply the distributive property by multiplying each term of \sqrt{15}+2\sqrt{3} by each term of \sqrt{5}-2.
\frac{\sqrt{5}\sqrt{3}\sqrt{5}-2\sqrt{15}+2\sqrt{3}\sqrt{5}-4\sqrt{3}}{3}
Factor 15=5\times 3. Rewrite the square root of the product \sqrt{5\times 3} as the product of square roots \sqrt{5}\sqrt{3}.
\frac{5\sqrt{3}-2\sqrt{15}+2\sqrt{3}\sqrt{5}-4\sqrt{3}}{3}
Multiply \sqrt{5} and \sqrt{5} to get 5.
\frac{5\sqrt{3}-2\sqrt{15}+2\sqrt{15}-4\sqrt{3}}{3}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.
\frac{5\sqrt{3}-4\sqrt{3}}{3}
Combine -2\sqrt{15} and 2\sqrt{15} to get 0.
\frac{\sqrt{3}}{3}
Combine 5\sqrt{3} and -4\sqrt{3} to get \sqrt{3}.