Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\sqrt{14}-\sqrt{15}\right)\left(\sqrt{14}-\sqrt{15}\right)}{\left(\sqrt{14}+\sqrt{15}\right)\left(\sqrt{14}-\sqrt{15}\right)}
Rationalize the denominator of \frac{\sqrt{14}-\sqrt{15}}{\sqrt{14}+\sqrt{15}} by multiplying numerator and denominator by \sqrt{14}-\sqrt{15}.
\frac{\left(\sqrt{14}-\sqrt{15}\right)\left(\sqrt{14}-\sqrt{15}\right)}{\left(\sqrt{14}\right)^{2}-\left(\sqrt{15}\right)^{2}}
Consider \left(\sqrt{14}+\sqrt{15}\right)\left(\sqrt{14}-\sqrt{15}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{14}-\sqrt{15}\right)\left(\sqrt{14}-\sqrt{15}\right)}{14-15}
Square \sqrt{14}. Square \sqrt{15}.
\frac{\left(\sqrt{14}-\sqrt{15}\right)\left(\sqrt{14}-\sqrt{15}\right)}{-1}
Subtract 15 from 14 to get -1.
\frac{\left(\sqrt{14}-\sqrt{15}\right)^{2}}{-1}
Multiply \sqrt{14}-\sqrt{15} and \sqrt{14}-\sqrt{15} to get \left(\sqrt{14}-\sqrt{15}\right)^{2}.
\frac{\left(\sqrt{14}\right)^{2}-2\sqrt{14}\sqrt{15}+\left(\sqrt{15}\right)^{2}}{-1}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{14}-\sqrt{15}\right)^{2}.
\frac{14-2\sqrt{14}\sqrt{15}+\left(\sqrt{15}\right)^{2}}{-1}
The square of \sqrt{14} is 14.
\frac{14-2\sqrt{210}+\left(\sqrt{15}\right)^{2}}{-1}
To multiply \sqrt{14} and \sqrt{15}, multiply the numbers under the square root.
\frac{14-2\sqrt{210}+15}{-1}
The square of \sqrt{15} is 15.
\frac{29-2\sqrt{210}}{-1}
Add 14 and 15 to get 29.
-29-\left(-2\sqrt{210}\right)
Anything divided by -1 gives its opposite. To find the opposite of 29-2\sqrt{210}, find the opposite of each term.
-29+2\sqrt{210}
The opposite of -2\sqrt{210} is 2\sqrt{210}.