Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\sqrt{14}+2\right)\left(1+\sqrt{71}\right)}{\left(1-\sqrt{71}\right)\left(1+\sqrt{71}\right)}
Rationalize the denominator of \frac{\sqrt{14}+2}{1-\sqrt{71}} by multiplying numerator and denominator by 1+\sqrt{71}.
\frac{\left(\sqrt{14}+2\right)\left(1+\sqrt{71}\right)}{1^{2}-\left(\sqrt{71}\right)^{2}}
Consider \left(1-\sqrt{71}\right)\left(1+\sqrt{71}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{14}+2\right)\left(1+\sqrt{71}\right)}{1-71}
Square 1. Square \sqrt{71}.
\frac{\left(\sqrt{14}+2\right)\left(1+\sqrt{71}\right)}{-70}
Subtract 71 from 1 to get -70.
\frac{\sqrt{14}+\sqrt{14}\sqrt{71}+2+2\sqrt{71}}{-70}
Apply the distributive property by multiplying each term of \sqrt{14}+2 by each term of 1+\sqrt{71}.
\frac{\sqrt{14}+\sqrt{994}+2+2\sqrt{71}}{-70}
To multiply \sqrt{14} and \sqrt{71}, multiply the numbers under the square root.
\frac{-\sqrt{14}-\sqrt{994}-2-2\sqrt{71}}{70}
Multiply both numerator and denominator by -1.