Evaluate
-\frac{\sqrt{14}}{70}-\frac{\sqrt{71}}{35}-\frac{\sqrt{994}}{70}-\frac{1}{35}\approx -0.773167464
Share
Copied to clipboard
\frac{\left(\sqrt{14}+2\right)\left(1+\sqrt{71}\right)}{\left(1-\sqrt{71}\right)\left(1+\sqrt{71}\right)}
Rationalize the denominator of \frac{\sqrt{14}+2}{1-\sqrt{71}} by multiplying numerator and denominator by 1+\sqrt{71}.
\frac{\left(\sqrt{14}+2\right)\left(1+\sqrt{71}\right)}{1^{2}-\left(\sqrt{71}\right)^{2}}
Consider \left(1-\sqrt{71}\right)\left(1+\sqrt{71}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{14}+2\right)\left(1+\sqrt{71}\right)}{1-71}
Square 1. Square \sqrt{71}.
\frac{\left(\sqrt{14}+2\right)\left(1+\sqrt{71}\right)}{-70}
Subtract 71 from 1 to get -70.
\frac{\sqrt{14}+\sqrt{14}\sqrt{71}+2+2\sqrt{71}}{-70}
Apply the distributive property by multiplying each term of \sqrt{14}+2 by each term of 1+\sqrt{71}.
\frac{\sqrt{14}+\sqrt{994}+2+2\sqrt{71}}{-70}
To multiply \sqrt{14} and \sqrt{71}, multiply the numbers under the square root.
\frac{-\sqrt{14}-\sqrt{994}-2-2\sqrt{71}}{70}
Multiply both numerator and denominator by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}