Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\sqrt{13}+\sqrt{5}\right)\left(\sqrt{13}+\sqrt{5}\right)}{\left(\sqrt{13}-\sqrt{5}\right)\left(\sqrt{13}+\sqrt{5}\right)}
Rationalize the denominator of \frac{\sqrt{13}+\sqrt{5}}{\sqrt{13}-\sqrt{5}} by multiplying numerator and denominator by \sqrt{13}+\sqrt{5}.
\frac{\left(\sqrt{13}+\sqrt{5}\right)\left(\sqrt{13}+\sqrt{5}\right)}{\left(\sqrt{13}\right)^{2}-\left(\sqrt{5}\right)^{2}}
Consider \left(\sqrt{13}-\sqrt{5}\right)\left(\sqrt{13}+\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{13}+\sqrt{5}\right)\left(\sqrt{13}+\sqrt{5}\right)}{13-5}
Square \sqrt{13}. Square \sqrt{5}.
\frac{\left(\sqrt{13}+\sqrt{5}\right)\left(\sqrt{13}+\sqrt{5}\right)}{8}
Subtract 5 from 13 to get 8.
\frac{\left(\sqrt{13}+\sqrt{5}\right)^{2}}{8}
Multiply \sqrt{13}+\sqrt{5} and \sqrt{13}+\sqrt{5} to get \left(\sqrt{13}+\sqrt{5}\right)^{2}.
\frac{\left(\sqrt{13}\right)^{2}+2\sqrt{13}\sqrt{5}+\left(\sqrt{5}\right)^{2}}{8}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{13}+\sqrt{5}\right)^{2}.
\frac{13+2\sqrt{13}\sqrt{5}+\left(\sqrt{5}\right)^{2}}{8}
The square of \sqrt{13} is 13.
\frac{13+2\sqrt{65}+\left(\sqrt{5}\right)^{2}}{8}
To multiply \sqrt{13} and \sqrt{5}, multiply the numbers under the square root.
\frac{13+2\sqrt{65}+5}{8}
The square of \sqrt{5} is 5.
\frac{18+2\sqrt{65}}{8}
Add 13 and 5 to get 18.