Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{2\sqrt{3}\left(\sqrt{20}+\sqrt{180}\right)}{\sqrt{60}-\sqrt{15}}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\frac{2\sqrt{3}\left(2\sqrt{5}+\sqrt{180}\right)}{\sqrt{60}-\sqrt{15}}
Factor 20=2^{2}\times 5. Rewrite the square root of the product \sqrt{2^{2}\times 5} as the product of square roots \sqrt{2^{2}}\sqrt{5}. Take the square root of 2^{2}.
\frac{2\sqrt{3}\left(2\sqrt{5}+6\sqrt{5}\right)}{\sqrt{60}-\sqrt{15}}
Factor 180=6^{2}\times 5. Rewrite the square root of the product \sqrt{6^{2}\times 5} as the product of square roots \sqrt{6^{2}}\sqrt{5}. Take the square root of 6^{2}.
\frac{2\sqrt{3}\times 8\sqrt{5}}{\sqrt{60}-\sqrt{15}}
Combine 2\sqrt{5} and 6\sqrt{5} to get 8\sqrt{5}.
\frac{16\sqrt{3}\sqrt{5}}{\sqrt{60}-\sqrt{15}}
Multiply 2 and 8 to get 16.
\frac{16\sqrt{15}}{\sqrt{60}-\sqrt{15}}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.
\frac{16\sqrt{15}}{2\sqrt{15}-\sqrt{15}}
Factor 60=2^{2}\times 15. Rewrite the square root of the product \sqrt{2^{2}\times 15} as the product of square roots \sqrt{2^{2}}\sqrt{15}. Take the square root of 2^{2}.
\frac{16\sqrt{15}}{\sqrt{15}}
Combine 2\sqrt{15} and -\sqrt{15} to get \sqrt{15}.
\frac{16\sqrt{15}\sqrt{15}}{\left(\sqrt{15}\right)^{2}}
Rationalize the denominator of \frac{16\sqrt{15}}{\sqrt{15}} by multiplying numerator and denominator by \sqrt{15}.
\frac{16\sqrt{15}\sqrt{15}}{15}
The square of \sqrt{15} is 15.
\frac{16\times 15}{15}
Multiply \sqrt{15} and \sqrt{15} to get 15.
\frac{240}{15}
Multiply 16 and 15 to get 240.
16
Divide 240 by 15 to get 16.